Question #88315
A, B, C, D are the points i − k, − i + 2 j, 2i − 3k, 3i − 2 j − k respectively. Show that the
projection of AB on CD is equal to that of CD on AB . Also find the cosine of their inclination.
1
Expert's answer
2019-04-29T10:35:58-0400

1.

A(1;0;-1)

B(-1;2;0)

C(2;0;-3)

D(3;-2;-1)

Then

AB=(11;20;0+1)=(2;2;1)\overrightarrow{AB}=(-1-1;2-0;0+1)=(-2;2;1)

CD=(32;20;1+3)=(1;2;2)\overrightarrow{CD}=(3-2;-2-0;-1+3)=(1;-2;2)

The projection AB on CD is:


ABCD/CD=(24+2)/12+(2)2+22=4/3\overrightarrow{AB}\cdot\overrightarrow{CD}/|CD|=(-2-4+2)/\sqrt{1²+(-2)²+2²}=-4/3

The projection CD on AB is:

CDAB/AB=(24+2)/(2)2+22+12=4/3\overrightarrow{CD}\cdot\overrightarrow{AB}/|AB|=(-2-4+2)/\sqrt{(-2)²+2²+1²}=-4/3

Then the projection AB on CD is equal to the projection CD on AB

2.


cos(AB,CD)=ABCD/(ABCD)=cos(\overrightarrow{AB},\overrightarrow{CD})=\overrightarrow{AB}\cdot\overrightarrow{CD}/(|AB|\cdot|CD|)=

=(24+2)/12+(2)2+22(2)2+22+12=4/9=(-2-4+2)/\sqrt{1²+(-2)²+2²}\cdot\sqrt{(-2)²+2²+1²}=-4/9



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS