A, B, C, D are the points i − k, − i + 2 j, 2i − 3k, 3i − 2 j − k respectively. Show that the
projection of AB on CD is equal to that of CD on AB . Also find the cosine of their inclination.
1
Expert's answer
2019-04-29T10:35:58-0400
1.
A(1;0;-1)
B(-1;2;0)
C(2;0;-3)
D(3;-2;-1)
Then
AB=(−1−1;2−0;0+1)=(−2;2;1)
CD=(3−2;−2−0;−1+3)=(1;−2;2)
The projection AB on CD is:
AB⋅CD/∣CD∣=(−2−4+2)/12+(−2)2+22=−4/3
The projection CD on AB is:
CD⋅AB/∣AB∣=(−2−4+2)/(−2)2+22+12=−4/3
Then the projection AB on CD is equal to the projection CD on AB
Comments