Given that x + 2y + 3z =1, 3x + 2y + z = 4, x + 3y + 2z = 0, Cramer's rule:
"z=\\frac{\\begin{Vmatrix}\n 1 & 2 & 1 \\\\\n 3 & 2 & 4 \\\\\n 1 & 3 & 0\n\\end{Vmatrix}}\n{\\begin{Vmatrix}\n 1 & 2 & 3 \\\\\n 3 & 2 & 1 \\\\\n1 & 3 & 2\n\\end{Vmatrix}} = \\frac{3}{12}=\\frac{1}{4}"
Solution: a. "7\/4, \\, -3\/4, \\, 1\/4"
What is the angle between the two lines "a\\cdot x+b \\cdot y=c" and "d\\cdot x + e\\cdot y =f" ?
Vectors, perpendicular to lines: "\\vec{v}_1 = (a,b), \\, \\vec{v}_2 = (d,e)"
Angle between vectors:
"\\cos{\\phi}= \\frac{\\vec{v}_1\\cdot \\vec{v}_2}{|\\vec{v}_1|\\cdot|\\vec{v}_2|} = \\frac{ad+eb}{\\sqrt{a^2+b^2}\\sqrt{d^2+e^2}}"If "\\cos{\\phi}<0 \\Rightarrow \\phi> \\pi\/2" , and angle between lines equal to "\\pi - \\phi" .
Therefore, angle between lines:
Comments
Leave a comment