Given that x + 2y + 3z =1, 3x + 2y + z = 4, x + 3y + 2z = 0, Cramer's rule:
x = ∥ 1 2 3 4 2 1 0 3 2 ∥ ∥ 1 2 3 3 2 1 1 3 2 ∥ = 21 12 = 7 4 x=\frac{\begin{Vmatrix}
1 & 2 & 3 \\
4 & 2 & 1 \\
0 & 3 & 2
\end{Vmatrix}}
{\begin{Vmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{Vmatrix}} = \frac{21}{12}=\frac{7}{4}\,\, x = ∥ ∥ 1 3 1 2 2 3 3 1 2 ∥ ∥ ∥ ∥ 1 4 0 2 2 3 3 1 2 ∥ ∥ = 12 21 = 4 7 y = ∥ 1 1 3 3 4 1 1 0 2 ∥ ∥ 1 2 3 3 2 1 1 3 2 ∥ = − 9 12 = − 3 4 y=\frac{\begin{Vmatrix}
1 & 1 & 3 \\
3 & 4 & 1 \\
1 & 0 & 2
\end{Vmatrix}}
{\begin{Vmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{Vmatrix}} = \frac{-9}{12}=\frac{-3}{4}\,\, y = ∥ ∥ 1 3 1 2 2 3 3 1 2 ∥ ∥ ∥ ∥ 1 3 1 1 4 0 3 1 2 ∥ ∥ = 12 − 9 = 4 − 3
z = ∥ 1 2 1 3 2 4 1 3 0 ∥ ∥ 1 2 3 3 2 1 1 3 2 ∥ = 3 12 = 1 4 z=\frac{\begin{Vmatrix}
1 & 2 & 1 \\
3 & 2 & 4 \\
1 & 3 & 0
\end{Vmatrix}}
{\begin{Vmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{Vmatrix}} = \frac{3}{12}=\frac{1}{4} z = ∥ ∥ 1 3 1 2 2 3 3 1 2 ∥ ∥ ∥ ∥ 1 3 1 2 2 3 1 4 0 ∥ ∥ = 12 3 = 4 1 Solution: a. 7 / 4 , − 3 / 4 , 1 / 4 7/4, \, -3/4, \, 1/4 7/4 , − 3/4 , 1/4
What is the angle between the two lines a ⋅ x + b ⋅ y = c a\cdot x+b \cdot y=c a ⋅ x + b ⋅ y = c and d ⋅ x + e ⋅ y = f d\cdot x + e\cdot y =f d ⋅ x + e ⋅ y = f ?
Vectors, perpendicular to lines: v ⃗ 1 = ( a , b ) , v ⃗ 2 = ( d , e ) \vec{v}_1 = (a,b), \, \vec{v}_2 = (d,e) v 1 = ( a , b ) , v 2 = ( d , e )
Angle between vectors:
cos ϕ = v ⃗ 1 ⋅ v ⃗ 2 ∣ v ⃗ 1 ∣ ⋅ ∣ v ⃗ 2 ∣ = a d + e b a 2 + b 2 d 2 + e 2 \cos{\phi}= \frac{\vec{v}_1\cdot \vec{v}_2}{|\vec{v}_1|\cdot|\vec{v}_2|} = \frac{ad+eb}{\sqrt{a^2+b^2}\sqrt{d^2+e^2}} cos ϕ = ∣ v 1 ∣ ⋅ ∣ v 2 ∣ v 1 ⋅ v 2 = a 2 + b 2 d 2 + e 2 a d + e b If cos ϕ < 0 ⇒ ϕ > π / 2 \cos{\phi}<0 \Rightarrow \phi> \pi/2 cos ϕ < 0 ⇒ ϕ > π /2 , and angle between lines equal to π − ϕ \pi - \phi π − ϕ .
Therefore, angle between lines:
ϕ = arccos ∣ a d + e b a 2 + b 2 d 2 + e 2 ∣ \phi=\arccos \left| \frac{ad+eb}{\sqrt{a^2+b^2}\sqrt{d^2+e^2}}\right| ϕ = arccos ∣ ∣ a 2 + b 2 d 2 + e 2 a d + e b ∣ ∣
Comments