Question #87807
3.Given that x + 2y + 3z =1, 3x + 2y + z = 4, x + 3y + 2z = 0. What is x,y and z?
a.7/4,−3/4,1/4
b.5/4,−2/4,¼
c.\(1,-3/4,1/4)
d.None of the option

4.What is the angle between the two linesâˆ′3x+4y=8 and âˆ′2xâˆ′8yâˆ′14=0?
a.14.63 degree
b.âˆ′14degree
c.−14.63degree
d.14 degree
1
Expert's answer
2019-04-15T11:46:21-0400

Given that x + 2y + 3z =1, 3x + 2y + z = 4, x + 3y + 2z = 0, Cramer's rule:


x=123421032123321132=2112=74x=\frac{\begin{Vmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \\ 0 & 3 & 2 \end{Vmatrix}} {\begin{Vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{Vmatrix}} = \frac{21}{12}=\frac{7}{4}\,\,y=113341102123321132=912=34y=\frac{\begin{Vmatrix} 1 & 1 & 3 \\ 3 & 4 & 1 \\ 1 & 0 & 2 \end{Vmatrix}} {\begin{Vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{Vmatrix}} = \frac{-9}{12}=\frac{-3}{4}\,\,

z=121324130123321132=312=14z=\frac{\begin{Vmatrix} 1 & 2 & 1 \\ 3 & 2 & 4 \\ 1 & 3 & 0 \end{Vmatrix}} {\begin{Vmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{Vmatrix}} = \frac{3}{12}=\frac{1}{4}

Solution: a. 7/4,3/4,1/47/4, \, -3/4, \, 1/4

What is the angle between the two lines ax+by=ca\cdot x+b \cdot y=c and dx+ey=fd\cdot x + e\cdot y =f

Vectors, perpendicular to lines: v1=(a,b),v2=(d,e)\vec{v}_1 = (a,b), \, \vec{v}_2 = (d,e)

Angle between vectors:

cosϕ=v1v2v1v2=ad+eba2+b2d2+e2\cos{\phi}= \frac{\vec{v}_1\cdot \vec{v}_2}{|\vec{v}_1|\cdot|\vec{v}_2|} = \frac{ad+eb}{\sqrt{a^2+b^2}\sqrt{d^2+e^2}}

If cosϕ<0ϕ>π/2\cos{\phi}<0 \Rightarrow \phi> \pi/2 , and angle between lines equal to πϕ\pi - \phi .

Therefore, angle between lines:


ϕ=arccosad+eba2+b2d2+e2\phi=\arccos \left| \frac{ad+eb}{\sqrt{a^2+b^2}\sqrt{d^2+e^2}}\right|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS