Answer to Question #87784 in Analytic Geometry for Shivam Nishad

Question #87784
A, B, C, D are the points i − k, − i + 2 j, 2i − 3k, 3i − 2 j − k respectively. Show that the
projection of AB on CD is equal to that of CD on AB . Also find the cosine of their
inclination.
1
Expert's answer
2019-04-23T03:56:08-0400

1.

A(1,0,-1)

B(-1,2,0)

C(2,0,-3)

D(3,-2,-1)

Then


AB=(11)i+(20)j+(0+1)k=2i+2j+k\overrightarrow{AB} =(-1-1)i+(2-0)j+(0+1)k=-2i+2j+k

CD=(32)i+(20)j+(1+3)k=1i2j+2k\overrightarrow{CD} =(3-2)i+(-2-0)j+(-1+3)k=1i-2j+2k

Then projection AB on CD is


ABCD/CD=(24+2)/(2)²+2²+1\overrightarrow{AB}\cdot\overrightarrow{CD} /|CD|=(-2-4+2)/\sqrt{(-2)²+2²+1}

=4/3=-4/3

And projection CD on AB is


CDAB/CD=(24+2)/1²+(2)²+2²\overrightarrow{CD}\cdot\overrightarrow{AB} /|CD|=(-2-4+2)/\sqrt{1²+(-2)²+2²}

=4/3=-4/3

Then projection AB on CD is equal CD on AB

2.


cos(AB,CD)=(ABCD)/(ABCD)=cos(\overrightarrow{AB},\overrightarrow{CD})=(\overrightarrow{AB}\cdot\overrightarrow{CD})/(|AB|\cdot|CD|)=


=(24+2)/(1+(2)²+2²1+(2)²+2²)==(-2-4+2)/(\sqrt{1+(-2)²+2²}\cdot\sqrt{1+(-2)²+2²})=

(24+2)/((1+(2)²+2²)(1+(2)²+2²))(−2−4+2)/((1+(−2)²+2²)\cdot(1+(−2)²+2²))=4/9=-4/9


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment