1.
A(1,0,-1)
B(-1,2,0)
C(2,0,-3)
D(3,-2,-1)
Then
A B → = ( − 1 − 1 ) i + ( 2 − 0 ) j + ( 0 + 1 ) k = − 2 i + 2 j + k \overrightarrow{AB} =(-1-1)i+(2-0)j+(0+1)k=-2i+2j+k A B = ( − 1 − 1 ) i + ( 2 − 0 ) j + ( 0 + 1 ) k = − 2 i + 2 j + k
C D → = ( 3 − 2 ) i + ( − 2 − 0 ) j + ( − 1 + 3 ) k = 1 i − 2 j + 2 k \overrightarrow{CD} =(3-2)i+(-2-0)j+(-1+3)k=1i-2j+2k C D = ( 3 − 2 ) i + ( − 2 − 0 ) j + ( − 1 + 3 ) k = 1 i − 2 j + 2 k Then projection AB on CD is
A B → ⋅ C D → / ∣ C D ∣ = ( − 2 − 4 + 2 ) / ( − 2 ) ² + 2 ² + 1 \overrightarrow{AB}\cdot\overrightarrow{CD} /|CD|=(-2-4+2)/\sqrt{(-2)²+2²+1} A B ⋅ C D /∣ C D ∣ = ( − 2 − 4 + 2 ) / ( − 2 ) ² + 2² + 1
= − 4 / 3 =-4/3 = − 4/3
And projection CD on AB is
C D → ⋅ A B → / ∣ C D ∣ = ( − 2 − 4 + 2 ) / 1 ² + ( − 2 ) ² + 2 ² \overrightarrow{CD}\cdot\overrightarrow{AB} /|CD|=(-2-4+2)/\sqrt{1²+(-2)²+2²} C D ⋅ A B /∣ C D ∣ = ( − 2 − 4 + 2 ) / 1² + ( − 2 ) ² + 2²
= − 4 / 3 =-4/3 = − 4/3
Then projection AB on CD is equal CD on AB
2.
c o s ( A B → , C D → ) = ( A B → ⋅ C D → ) / ( ∣ A B ∣ ⋅ ∣ C D ∣ ) = cos(\overrightarrow{AB},\overrightarrow{CD})=(\overrightarrow{AB}\cdot\overrightarrow{CD})/(|AB|\cdot|CD|)= cos ( A B , C D ) = ( A B ⋅ C D ) / ( ∣ A B ∣ ⋅ ∣ C D ∣ ) =
= ( − 2 − 4 + 2 ) / ( 1 + ( − 2 ) ² + 2 ² ⋅ 1 + ( − 2 ) ² + 2 ² ) = =(-2-4+2)/(\sqrt{1+(-2)²+2²}\cdot\sqrt{1+(-2)²+2²})= = ( − 2 − 4 + 2 ) / ( 1 + ( − 2 ) ² + 2² ⋅ 1 + ( − 2 ) ² + 2² ) =
( − 2 − 4 + 2 ) / ( ( 1 + ( − 2 ) ² + 2 ² ) ⋅ ( 1 + ( − 2 ) ² + 2 ² ) ) (−2−4+2)/((1+(−2)²+2²)\cdot(1+(−2)²+2²)) ( − 2 − 4 + 2 ) / (( 1 + ( − 2 ) ² + 2² ) ⋅ ( 1 + ( − 2 ) ² + 2² )) = − 4 / 9 =-4/9 = − 4/9
Comments
Leave a comment