The normalized axes are
"\\mathbf{e}'_1 = \\frac{1}{\\sqrt{10}} (1, -3, 0), \\hspace{3mm} \\mathbf{e}'_2 = \\frac{1}{\\sqrt{10}} (3, 1, 0), \\hspace{3mm}\n\\mathbf{e}'_3 = (0, 0, 1)" or
"\\begin{pmatrix}\n \\mathbf{e}'_1 \\\\ \\mathbf{e}'_2 \\\\ \\mathbf{e}'_3\n\\end{pmatrix} = \n\\begin{pmatrix}\n\\frac{1}{\\sqrt{10}} & \\frac{-3}{\\sqrt{10}} & 0 \\\\\n\\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}} & 0\\\\\n0 & 0 & 1 \\\\\n\\end{pmatrix}\n\\begin{pmatrix}\n \\mathbf{e}_1 \\\\ \\mathbf{e}_2 \\\\ \\mathbf{e}_3\n\\end{pmatrix}" - the basis in the rotated frame. The transformation of coordinates is given by
"\\begin{pmatrix}\n x' \\\\ y' \\\\ z'\n\\end{pmatrix} =\\begin{pmatrix}\n\\frac{1}{\\sqrt{10}} & \\frac{-3}{\\sqrt{10}} & 0 \\\\\n\\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}} & 0\\\\\n0 & 0 & 1 \\\\\n\\end{pmatrix}^{-1}\n\\begin{pmatrix}\n x \\\\ y \\\\ z\n\\end{pmatrix}"
so
"\\begin{pmatrix}\n x \\\\ y \\\\ z\n\\end{pmatrix} =\\begin{pmatrix}\n\\frac{1}{\\sqrt{10}} & \\frac{-3}{\\sqrt{10}} & 0 \\\\\n\\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}} & 0\\\\\n0 & 0 & 1 \\\\\n\\end{pmatrix}\n\\begin{pmatrix}\n x' \\\\ y' \\\\ z'\n\\end{pmatrix}"
"\\bigg\\{\\begin{matrix}\nx &=& \\frac{x'}{\\sqrt{10}} - \\frac{3y'}{\\sqrt{10}} \\\\\ny &=& \\frac{3x'}{\\sqrt{10}} + \\frac{y'}{\\sqrt{10}} \\\\\nz &=& z'\n\\end{matrix}"
"12x^2 -2y^2+z^2=2xy"
"12\\frac{(x' - 3y')^2}{10} - 2\\frac{(3x' +y')^2}{10} + z'^2 = 2\\frac{(x' - 3y')(3x' +y')}{10}"
"12(x'^2 - 6x'y'+9y'^2) - 2(9x'^2 +6x'y' + y'^2)+ \\\\ + 10z'^2 = 2(3x'^2 -8x'y'-3y'^2)"
"-12x'^2 -68x'y' +112y'^2 +10z'^2 = 0"
Answer:
"5z^2 +56y'^2-6x'^2=34x'y'"
Comments
Leave a comment