2019-05-14T12:37:24-04:00
Find the transformation of the eqn 12x^2-2y^2+z^2=2xy if the origin is kept fixed and the axes are rotated in such a way that the direction ratio of the new axes are (1,-3,0);3,1,0;0,0,1
1
2019-05-15T08:40:40-0400
The normalized axes are
e 1 ′ = 1 10 ( 1 , − 3 , 0 ) , e 2 ′ = 1 10 ( 3 , 1 , 0 ) , e 3 ′ = ( 0 , 0 , 1 ) \mathbf{e}'_1 = \frac{1}{\sqrt{10}} (1, -3, 0), \hspace{3mm} \mathbf{e}'_2 = \frac{1}{\sqrt{10}} (3, 1, 0), \hspace{3mm}
\mathbf{e}'_3 = (0, 0, 1) e 1 ′ = 10 1 ( 1 , − 3 , 0 ) , e 2 ′ = 10 1 ( 3 , 1 , 0 ) , e 3 ′ = ( 0 , 0 , 1 ) or
( e 1 ′ e 2 ′ e 3 ′ ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) ( e 1 e 2 e 3 ) \begin{pmatrix}
\mathbf{e}'_1 \\ \mathbf{e}'_2 \\ \mathbf{e}'_3
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} & 0 \\
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0\\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
\mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3
\end{pmatrix} ⎝ ⎛ e 1 ′ e 2 ′ e 3 ′ ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 10 − 3 10 1 0 0 0 1 ⎠ ⎞ ⎝ ⎛ e 1 e 2 e 3 ⎠ ⎞ - the basis in the rotated frame. The transformation of coordinates is given by
( x ′ y ′ z ′ ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) − 1 ( x y z ) \begin{pmatrix}
x' \\ y' \\ z'
\end{pmatrix} =\begin{pmatrix}
\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} & 0 \\
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0\\
0 & 0 & 1 \\
\end{pmatrix}^{-1}
\begin{pmatrix}
x \\ y \\ z
\end{pmatrix} ⎝ ⎛ x ′ y ′ z ′ ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 10 − 3 10 1 0 0 0 1 ⎠ ⎞ − 1 ⎝ ⎛ x y z ⎠ ⎞
so
( x y z ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) ( x ′ y ′ z ′ ) \begin{pmatrix}
x \\ y \\ z
\end{pmatrix} =\begin{pmatrix}
\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} & 0 \\
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} & 0\\
0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
x' \\ y' \\ z'
\end{pmatrix} ⎝ ⎛ x y z ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 10 − 3 10 1 0 0 0 1 ⎠ ⎞ ⎝ ⎛ x ′ y ′ z ′ ⎠ ⎞
{ x = x ′ 10 − 3 y ′ 10 y = 3 x ′ 10 + y ′ 10 z = z ′ \bigg\{\begin{matrix}
x &=& \frac{x'}{\sqrt{10}} - \frac{3y'}{\sqrt{10}} \\
y &=& \frac{3x'}{\sqrt{10}} + \frac{y'}{\sqrt{10}} \\
z &=& z'
\end{matrix} { x y z = = = 10 x ′ − 10 3 y ′ 10 3 x ′ + 10 y ′ z ′
12 x 2 − 2 y 2 + z 2 = 2 x y 12x^2 -2y^2+z^2=2xy 12 x 2 − 2 y 2 + z 2 = 2 x y
12 ( x ′ − 3 y ′ ) 2 10 − 2 ( 3 x ′ + y ′ ) 2 10 + z ′ 2 = 2 ( x ′ − 3 y ′ ) ( 3 x ′ + y ′ ) 10 12\frac{(x' - 3y')^2}{10} - 2\frac{(3x' +y')^2}{10} + z'^2 = 2\frac{(x' - 3y')(3x' +y')}{10} 12 10 ( x ′ − 3 y ′ ) 2 − 2 10 ( 3 x ′ + y ′ ) 2 + z ′2 = 2 10 ( x ′ − 3 y ′ ) ( 3 x ′ + y ′ )
12 ( x ′ 2 − 6 x ′ y ′ + 9 y ′ 2 ) − 2 ( 9 x ′ 2 + 6 x ′ y ′ + y ′ 2 ) + + 10 z ′ 2 = 2 ( 3 x ′ 2 − 8 x ′ y ′ − 3 y ′ 2 ) 12(x'^2 - 6x'y'+9y'^2) - 2(9x'^2 +6x'y' + y'^2)+ \\ + 10z'^2 = 2(3x'^2 -8x'y'-3y'^2) 12 ( x ′2 − 6 x ′ y ′ + 9 y ′2 ) − 2 ( 9 x ′2 + 6 x ′ y ′ + y ′2 ) + + 10 z ′2 = 2 ( 3 x ′2 − 8 x ′ y ′ − 3 y ′2 )
− 12 x ′ 2 − 68 x ′ y ′ + 112 y ′ 2 + 10 z ′ 2 = 0 -12x'^2 -68x'y' +112y'^2 +10z'^2 = 0 − 12 x ′2 − 68 x ′ y ′ + 112 y ′2 + 10 z ′2 = 0
Answer:
5 z 2 + 56 y ′ 2 − 6 x ′ 2 = 34 x ′ y ′ 5z^2 +56y'^2-6x'^2=34x'y' 5 z 2 + 56 y ′2 − 6 x ′2 = 34 x ′ y ′
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments