The sphere
x 2 + y 2 + z 2 − 9 + λ ( 2 x + 2 y − 7 ) = 0 x^2+y^2+z^2-9+\lambda(2x+2y-7)=0 x 2 + y 2 + z 2 − 9 + λ ( 2 x + 2 y − 7 ) = 0 passes through the given circle for all values of λ . \lambda. λ .
Its center is ( − λ , − λ , 0 ) . (-\lambda,\ -\lambda,\ 0 ). ( − λ , − λ , 0 ) .
Radius is 2 λ 2 + 7 λ + 9 . \sqrt{2\lambda^2+7\lambda+9}. 2 λ 2 + 7 λ + 9 .
If a plane x − y + z + 3 = 0 x-y+z+3=0 x − y + z + 3 = 0 touches a sphere then the lenght of the the perpendicular from its centre to the plane is equal to its radius
∣ − λ + λ + 0 + 3 ∣ ( 1 ) 2 + ( − 1 ) 2 + ( 1 ) 2 = 2 λ 2 + 7 λ + 9 {|-\lambda+\lambda+0+3| \over \sqrt{(1)^2+(-1)^2+(1)^2}}=\sqrt{2\lambda^2+7\lambda+9} ( 1 ) 2 + ( − 1 ) 2 + ( 1 ) 2 ∣ − λ + λ + 0 + 3∣ = 2 λ 2 + 7 λ + 9
2 λ 2 + 7 λ + 9 = 3 2\lambda^2+7\lambda+9=3 2 λ 2 + 7 λ + 9 = 3
2 λ 2 + 7 λ + 6 = 0 2\lambda^2+7\lambda+6=0 2 λ 2 + 7 λ + 6 = 0
λ = − 7 ± ( 7 ) 2 − 4 ( 2 ) ( 6 ) 2 ( 2 ) = − 7 ± 1 4 \lambda={ -7\pm\sqrt{(7)^2-4(2)(6)}\over 2(2)}={ -7\pm1\over 4} λ = 2 ( 2 ) − 7 ± ( 7 ) 2 − 4 ( 2 ) ( 6 ) = 4 − 7 ± 1 λ 1 = − 2 , λ 2 = − 3 2 \lambda_1=-2,\ \lambda_2=-{3 \over 2} λ 1 = − 2 , λ 2 = − 2 3 λ 1 = − 2 \lambda_1=-2 λ 1 = − 2
Its center is ( 2 , 2 , 0 ) . (2,\ 2,\ 0 ). ( 2 , 2 , 0 ) .
Radius is 2 ( − 2 ) 2 + 7 ( − 2 ) + 9 = 3 . \sqrt{2(-2)^2+7(-2)+9}=\sqrt{3}. 2 ( − 2 ) 2 + 7 ( − 2 ) + 9 = 3 .
The equation of the sphere is
( x − 2 ) 2 + ( y − 2 ) 2 + z 2 = 3 (x-2)^2+(y-2)^2+z^2=3 ( x − 2 ) 2 + ( y − 2 ) 2 + z 2 = 3
λ 2 = − 3 2 \lambda_2=-{3 \over 2} λ 2 = − 2 3
Its center is ( 3 2 , 3 2 , 0 ) . ({3 \over 2},\ {3 \over 2},\ 0). ( 2 3 , 2 3 , 0 ) .
Radius is 2 ( − 3 2 ) 2 + 7 ( − 3 2 ) + 9 = 3 . \sqrt{2(-{3 \over 2})^2+7(-{3 \over 2})+9}=\sqrt{3}. 2 ( − 2 3 ) 2 + 7 ( − 2 3 ) + 9 = 3 .
The equation of the sphere is
( x − 3 2 ) 2 + ( y − 3 2 ) 2 + z 2 = 3 (x-{3 \over 2})^2+(y-{3 \over 2})^2+z^2=3 ( x − 2 3 ) 2 + ( y − 2 3 ) 2 + z 2 = 3
Comments