Question #89742
Find the equation of the sphere which pass through the circle x^2+y^2+z^2=9,2x+2y-7=0& the touch the plane x-y+z+3=3
1
Expert's answer
2019-05-15T08:43:21-0400

The sphere


x2+y2+z29+λ(2x+2y7)=0x^2+y^2+z^2-9+\lambda(2x+2y-7)=0

passes through the given circle for all values of λ.\lambda.

Its center is (λ, λ, 0).(-\lambda,\ -\lambda,\ 0 ).

Radius is 2λ2+7λ+9.\sqrt{2\lambda^2+7\lambda+9}.

If a plane xy+z+3=0x-y+z+3=0 touches a sphere then the lenght of the the perpendicular from its centre to the plane is equal to its radius

λ+λ+0+3(1)2+(1)2+(1)2=2λ2+7λ+9{|-\lambda+\lambda+0+3| \over \sqrt{(1)^2+(-1)^2+(1)^2}}=\sqrt{2\lambda^2+7\lambda+9}

2λ2+7λ+9=32\lambda^2+7\lambda+9=3

2λ2+7λ+6=02\lambda^2+7\lambda+6=0

λ=7±(7)24(2)(6)2(2)=7±14\lambda={ -7\pm\sqrt{(7)^2-4(2)(6)}\over 2(2)}={ -7\pm1\over 4}λ1=2, λ2=32\lambda_1=-2,\ \lambda_2=-{3 \over 2}

λ1=2\lambda_1=-2

Its center is (2, 2, 0).(2,\ 2,\ 0 ).

Radius is 2(2)2+7(2)+9=3.\sqrt{2(-2)^2+7(-2)+9}=\sqrt{3}.

The equation of the sphere is


(x2)2+(y2)2+z2=3(x-2)^2+(y-2)^2+z^2=3

λ2=32\lambda_2=-{3 \over 2}

Its center is (32, 32, 0).({3 \over 2},\ {3 \over 2},\ 0).

Radius is 2(32)2+7(32)+9=3.\sqrt{2(-{3 \over 2})^2+7(-{3 \over 2})+9}=\sqrt{3}.

The equation of the sphere is


(x32)2+(y32)2+z2=3(x-{3 \over 2})^2+(y-{3 \over 2})^2+z^2=3

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS