The sphere
passes through the given circle for all values of "\\lambda."
Its center is "(-\\lambda,\\ -\\lambda,\\ 0 )."
Radius is "\\sqrt{2\\lambda^2+7\\lambda+9}."
If a plane "x-y+z+3=0" touches a sphere then the lenght of the the perpendicular from its centre to the plane is equal to its radius
"{|-\\lambda+\\lambda+0+3| \\over \\sqrt{(1)^2+(-1)^2+(1)^2}}=\\sqrt{2\\lambda^2+7\\lambda+9}""2\\lambda^2+7\\lambda+9=3"
"2\\lambda^2+7\\lambda+6=0"
"\\lambda={ -7\\pm\\sqrt{(7)^2-4(2)(6)}\\over 2(2)}={ -7\\pm1\\over 4}""\\lambda_1=-2,\\ \\lambda_2=-{3 \\over 2}"
"\\lambda_1=-2"
Its center is "(2,\\ 2,\\ 0 )."
Radius is "\\sqrt{2(-2)^2+7(-2)+9}=\\sqrt{3}."
The equation of the sphere is
"\\lambda_2=-{3 \\over 2}"
Its center is "({3 \\over 2},\\ {3 \\over 2},\\ 0)."
Radius is "\\sqrt{2(-{3 \\over 2})^2+7(-{3 \\over 2})+9}=\\sqrt{3}."
The equation of the sphere is
Comments
Leave a comment