For the first find an equation of intersection curve.
{ 4 x 2 + y 2 + 4 z 2 + 4 y z + 2 z x = 0 x + 2 y + 3 z = 0 \begin{cases}
4x^2+y^2+4z^2+4yz+2zx=0 \\
x+2y+3z=0
\end{cases} { 4 x 2 + y 2 + 4 z 2 + 4 yz + 2 z x = 0 x + 2 y + 3 z = 0
{ z = − x + 2 y 3 4 x 2 + y 2 + 4 ( x + 2 y 3 ) 2 − 4 y ( x + 2 y ) 3 − 2 x ( x + 2 y ) 3 = 0 \begin{cases}
z=-\frac{x+2y}{3} \\
4x^2+y^2+4(\frac{x+2y}{3})^2-\frac{4y(x+2y)}{3}-\frac{2x(x+2y)}{3}=0
\end{cases} { z = − 3 x + 2 y 4 x 2 + y 2 + 4 ( 3 x + 2 y ) 2 − 3 4 y ( x + 2 y ) − 3 2 x ( x + 2 y ) = 0
34 x 2 + y 2 − 8 x y = 0 34x^2+y^2-8xy=0 34 x 2 + y 2 − 8 x y = 0
Transform the equation
( y − ( 4 − 3 2 i ) x ) ( y − ( 4 + 3 2 i ) x ) = 0 (y-(4-3\sqrt{2}i)x)(y-(4+3\sqrt{2}i)x)=0 ( y − ( 4 − 3 2 i ) x ) ( y − ( 4 + 3 2 i ) x ) = 0
This is equation of two imaginary intersecting lines.
Angle between the lines y=k 1 x and y=k 2 x is t a n α = k 2 − k 1 1 + k 2 k 1 tan \alpha =\frac{k_{2}-k_{1}}{1+k_{2}k_{1}} t an α = 1 + k 2 k 1 k 2 − k 1
In our case k 1 = 4 − 3 2 i k_{1}=4-3\sqrt{2}i k 1 = 4 − 3 2 i and k 2 = 4 + 3 2 i k_{2}=4+3\sqrt{2}i k 2 = 4 + 3 2 i .
It mean, that t a n α = ( 4 + 3 2 i ) − ( 4 − 3 2 i ) 1 + ( 4 − 3 2 i ) ( 4 + 3 2 i ) = 6 2 i 34 = 3 2 i 17 tan\alpha =\frac{(4+3\sqrt{2}i)-(4-3\sqrt{2}i)}{1+(4-3\sqrt{2}i)(4+3\sqrt{2}i)}=\frac{6\sqrt{2}i}{34}=\frac{3\sqrt{2}i}{17} t an α = 1 + ( 4 − 3 2 i ) ( 4 + 3 2 i ) ( 4 + 3 2 i ) − ( 4 − 3 2 i ) = 34 6 2 i = 17 3 2 i
The angle between the lines of intersection is
α = t a n − 1 ( 3 2 i 17 ) \alpha=tan^{-1}(\frac{3\sqrt{2}i}{17}) α = t a n − 1 ( 17 3 2 i )
Comments