Question #293609

Prove that the length of the chord of a parabola which passes through the focus and which is inclined at 30° to the axis of the parabola is four times the length of the latus rectum.


1
Expert's answer
2022-02-08T11:36:56-0500

Solution:

Equation of parabola in polar form is

2aSP=1cos30SP=2a1cos30\begin{aligned} &\frac{2 \mathrm{a}}{\mathrm{SP}}=1-\cos 30^{\circ} \\ &\Rightarrow \mathrm{SP}=\frac{2 \mathrm{a}}{1-\cos 30^{\circ}} \end{aligned}

2ar=1cosθ\frac{2 \mathrm{a}}{\mathrm{r}}=1-\cos \theta


Let PP\mathrm{PP}^{\prime}  be the focal chord then parametric angles of P and P' are 3030^{\circ} and π+30\pi+ 30^{\circ}  respectively then


Also 

2aSP=1cos(π+30)SP=2a1cos(π+30)\frac{2 \mathrm{a}}{\mathrm{SP}^{\prime}}=1-\cos \left(\pi+30^{\circ}\right) \\\Rightarrow \mathrm{SP}^{\prime}=\frac{2 \mathrm{a}}{1-\cos \left(\pi+30^{\circ}\right)}


Length of focal chord = PS + PS'

1=2a1cos30+2a1cos(π+30)1=2a1cos30+2a1+cos30\begin{aligned} &\Rightarrow 1=\frac{2 \mathrm{a}}{1-\cos 30^{\circ}}+\frac{2 \mathrm{a}}{1-\cos \left(\pi+30^{\circ}\right)} \\ &\Rightarrow 1=\frac{2 \mathrm{a}}{1-\cos 30^{\circ}}+\frac{2 \mathrm{a}}{1+\cos 30^{\circ}} \end{aligned}

1=2a{1+cos30+1cos301cos230}1=2a{2134}1=16a1=4×4a1=4× length of latus rectum  Hence proved. \begin{aligned} &\Rightarrow 1=2 \mathrm{a}\left\{\frac{1+\cos 30^{\circ}+1-\cos 30^{\circ}}{1-\cos ^{2} 30^{\circ}}\right\} \\ &\Rightarrow 1=2 \mathrm{a}\left\{\frac{2}{1-\frac{3}{4}}\right\} \\ &\Rightarrow 1=16 \mathrm{a} \\ &\Rightarrow 1=4 \times 4 \mathrm{a} \\ &\Rightarrow 1=4 \times \text { length of latus rectum } \\ &\text { Hence proved. } \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS