Prove that the length of the chord of a parabola which passes through the focus and which is inclined at 30° to the axis of the parabola is four times the length of the latus rectum.
Equation of parabola in polar form is
"\\begin{aligned}\n\n&\\frac{2 \\mathrm{a}}{\\mathrm{SP}}=1-\\cos 30^{\\circ} \\\\\n\n&\\Rightarrow \\mathrm{SP}=\\frac{2 \\mathrm{a}}{1-\\cos 30^{\\circ}}\n\n\\end{aligned}"
"\\frac{2 \\mathrm{a}}{\\mathrm{r}}=1-\\cos \\theta"
Let "\\mathrm{PP}^{\\prime}" be the focal chord then parametric angles of P and P' are "30^{\\circ}" and "\\pi+ 30^{\\circ}" respectively then
Also
"\\frac{2 \\mathrm{a}}{\\mathrm{SP}^{\\prime}}=1-\\cos \\left(\\pi+30^{\\circ}\\right) \n\n\n\\\\\\Rightarrow \\mathrm{SP}^{\\prime}=\\frac{2 \\mathrm{a}}{1-\\cos \\left(\\pi+30^{\\circ}\\right)}"
Length of focal chord = PS + PS'
"\\begin{aligned}\n\n&\\Rightarrow 1=\\frac{2 \\mathrm{a}}{1-\\cos 30^{\\circ}}+\\frac{2 \\mathrm{a}}{1-\\cos \\left(\\pi+30^{\\circ}\\right)} \\\\\n\n&\\Rightarrow 1=\\frac{2 \\mathrm{a}}{1-\\cos 30^{\\circ}}+\\frac{2 \\mathrm{a}}{1+\\cos 30^{\\circ}}\n\n\\end{aligned}"
"\\begin{aligned}\n&\\Rightarrow 1=2 \\mathrm{a}\\left\\{\\frac{1+\\cos 30^{\\circ}+1-\\cos 30^{\\circ}}{1-\\cos ^{2} 30^{\\circ}}\\right\\} \\\\\n&\\Rightarrow 1=2 \\mathrm{a}\\left\\{\\frac{2}{1-\\frac{3}{4}}\\right\\} \\\\\n&\\Rightarrow 1=16 \\mathrm{a} \\\\\n&\\Rightarrow 1=4 \\times 4 \\mathrm{a} \\\\\n&\\Rightarrow 1=4 \\times \\text { length of latus rectum } \\\\\n&\\text { Hence proved. }\n\\end{aligned}"
Comments
Leave a comment