Prove that the equation of a line through (π₯1 , π¦1) and (π₯2 , π¦2) can be expressed in the form determinant
x y 1
x1 y1 1
x2 y2 1
= 0
Two points are (π₯1 , π¦1) and (π₯2 , π¦2).
Slope "=m=\\dfrac{y_2-y_1}{x_2-x_1}"
Intercept"=c=\\dfrac{x_1y_2-x_2y_1}{x_2-x_1}"
Now, equation is "y=mx+c"
"\\Rightarrow y=\\dfrac{y_2-y_1}{x_2-x_1}x+\\dfrac{x_1y_2-x_2y_1}{x_2-x_1}\\ ...(i)"
Now, given determinant is "\\begin{vmatrix} x&y&1\\\\x_1&y_1&1\\\\x_2&y_2&1\\end {vmatrix}=0"
On expanding,
"x(y_1-y_2)-y(x_1-x_2)+(x_1y_2-x_2y_1)=0\n\\\\\\Rightarrow x\\dfrac{(y_1-y_2)}{(x_1-x_2)}-y+\\dfrac{(x_1y_2-x_2y_1)}{(x_1-x_2)}=0\n\\\\ \\Rightarrow y=\\dfrac{y_2-y_1}{x_2-x_1}x+\\dfrac{x_1y_2-x_2y_1}{x_2-x_1}\\ ...(ii)"
From (i) & (ii), it is proved.
Comments
Leave a comment