Question #293611

Find the equation of the plane which passes through the line of intersection of the planes 3𝑥 + 4𝑦 − 5𝑧 = 9 and 2𝑥 + 6𝑦 + 6𝑧 = 7 and which is perpendicular to the plane 3𝑥 + 2𝑦 − 5𝑧 + 6 = 0


1
Expert's answer
2022-02-08T15:10:46-0500

Any plane though the line of intersection of the planes:

3𝑥+4𝑦5𝑧9=0 and 2𝑥+6𝑦+6𝑧7=03𝑥 + 4𝑦 − 5𝑧 - 9=0 \text{ and } 2𝑥 + 6𝑦 + 6𝑧 - 7=0

is given by;

(3𝑥+4𝑦5𝑧9)+λ(2𝑥+6𝑦+6𝑧7)=0x(3+2λ)+y(4+6λ)+z(5+6λ)=(3+2λ, 4+6λ, 5+6λ)(x, y, z)=9+7λ(1)(3𝑥 + 4𝑦 − 5𝑧-9)+\lambda(2𝑥 + 6𝑦 + 6𝑧-7)=0\\ \Rightarrow x(3+2\lambda)+y(4+6\lambda)+z(-5+6\lambda)=(3+2\lambda,\ 4+6\lambda,\ -5+6\lambda)\cdot(x,\ y,\ z)=9+7\lambda\cdots\cdots(1)and this is perpendicular to the plane 3𝑥+2𝑦5𝑧=(3, 2, 5)(x, y, z)=6\displaystyle 3𝑥 + 2𝑦 − 5𝑧 =(3,\ 2,\ -5)\cdot(x,\ y,\ z)= -6 given in the question.


Since they are perpendicular, then their dot product of the vectors is zero. That is;

(3+2λ, 4+6λ, 5+6λ)(3, 2, 5)=3×(3+2λ)+2×(4+6λ)5×(5+6λ)=09+6λ+8+12λ+2530λ=0λ=72\displaystyle (3+2\lambda,\ 4+6\lambda,\ -5+6\lambda)\cdot(3,\ 2,\ -5)=3\times(3+2\lambda)+2\times(4+6\lambda)-5\times(-5+6\lambda)=0\\ \Rightarrow9+6\lambda+8+12\lambda+25-30\lambda=0\\ \Rightarrow\lambda=\frac{7}{2}

Substituting λ=72\displaystyle \lambda=\frac{7}{2} into (1)(1) yields;

x[3+2(72)]+y[4+6(72)]+z[5+6(72)]=9+7(72)\displaystyle x\left[3+2\left(\frac{7}{2}\right)\right]+y\left[4+6\left(\frac{7}{2}\right)\right]+z\left[-5+6\left(\frac{7}{2}\right)\right]=9+7\left(\frac{7}{2}\right)

20x+50y+32z=67\displaystyle \Rightarrow20x+50y+32z=67 which is the equation of the plane we want.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS