Find the equation of the plane which passes through the line of intersection of the planes 3π₯ + 4π¦ β 5π§ = 9 and 2π₯ + 6π¦ + 6π§ = 7 and which is perpendicular to the plane 3π₯ + 2π¦ β 5π§ + 6 = 0
Any plane though the line of intersection of the planes:
"3\ud835\udc65 + 4\ud835\udc66 \u2212 5\ud835\udc67 - 9=0 \\text{ and } 2\ud835\udc65 + 6\ud835\udc66 + 6\ud835\udc67 - 7=0"
is given by;
"(3\ud835\udc65 + 4\ud835\udc66 \u2212 5\ud835\udc67-9)+\\lambda(2\ud835\udc65 + 6\ud835\udc66 + 6\ud835\udc67-7)=0\\\\\n\\Rightarrow x(3+2\\lambda)+y(4+6\\lambda)+z(-5+6\\lambda)=(3+2\\lambda,\\ 4+6\\lambda,\\ -5+6\\lambda)\\cdot(x,\\ y,\\ z)=9+7\\lambda\\cdots\\cdots(1)"and this is perpendicular to the plane "\\displaystyle\n3\ud835\udc65 + 2\ud835\udc66 \u2212 5\ud835\udc67 =(3,\\ 2,\\ -5)\\cdot(x,\\ y,\\ z)= -6" given in the question.
Since they are perpendicular, then their dot product of the vectors is zero. That is;
"\\displaystyle\n(3+2\\lambda,\\ 4+6\\lambda,\\ -5+6\\lambda)\\cdot(3,\\ 2,\\ -5)=3\\times(3+2\\lambda)+2\\times(4+6\\lambda)-5\\times(-5+6\\lambda)=0\\\\\n\\Rightarrow9+6\\lambda+8+12\\lambda+25-30\\lambda=0\\\\\n\\Rightarrow\\lambda=\\frac{7}{2}"
Substituting "\\displaystyle\n\\lambda=\\frac{7}{2}" into "(1)" yields;
"\\displaystyle\nx\\left[3+2\\left(\\frac{7}{2}\\right)\\right]+y\\left[4+6\\left(\\frac{7}{2}\\right)\\right]+z\\left[-5+6\\left(\\frac{7}{2}\\right)\\right]=9+7\\left(\\frac{7}{2}\\right)"
"\\displaystyle\n\\Rightarrow20x+50y+32z=67" which is the equation of the plane we want.
Comments
Leave a comment