Consider the vectors "\\mathbf{a}=(-k, 1+k, k(1+k))" and "\\mathbf{b}=(1+k, k(1+k), -k)" where k is some constant. Which of the following is/are correct?
1.
If two vectors are perpendicular then "\\overrightarrow{A}.\\overrightarrow{B}=0"
"[-k\\widehat{i}+(i+k)\\widehat{j}+9k+k^2)\\widehat{k}].[(1+k)\\widehat{i}+(k+k^2)\\widehat{j}-k\\widehat{k}=0"
"-k(1+k)+(1+k)(k+k^2)+(k+k^2)(-k)=0"
"-k-k^2+k+k^2+k^2+k^3-k^2-k^3=0\\\\0=0"
option 1 is correct
2.
"|\\overrightarrow{A}|=\\sqrt{(-k)^2+(1+k)^2+(k+k^2)}"
"\\\\=\\sqrt{k^2+1+k^2+2k+k^2+k^4+2k^3}"
"=\\sqrt{k^4+2k^3+3k^2+2k+1}"
"\\\\|\\overrightarrow{B}|=\\sqrt{(1+k)^2+(k+k^2)+(-k)^2}"
"\\\\=\\sqrt{1+k^2+2k+k^2+k^4+2k^3+k^2}"
"\\\\\\sqrt{k^4+2k^3+3k^2+2k+1}"
"\\\\|\\overrightarrow{A}|=|\\overrightarrow{B}|"
option 2 is correct
3.
if "\\overrightarrow{A} \\& \\overrightarrow{B}" is a unit vector
"|\\overrightarrow{A}|=1,\\space |\\overrightarrow{B}|=1"
"k^4+2k^3+3k^2+2k+1=1\\\\k(k^3+2k^2+3k+2)=0................(1)\\\\for\\space k=1"
equation (1) not satisfied so option (3) is not correct
4.
"|\\overrightarrow{A}|=1"
by equation (1)
"k((k^3+2k^2+3k+2)=0\\\\k=0\\\\k^3+2k^2+3k+2=0\\\\put\\space k=-1\\\\-1+2-3+2=0\\\\0=0"
option 4 is correct
5.
vector is parallel if
"-k=d(1+k)\\space \\&\\space 1+k=d(k(1+k)\\\\\\frac{-k}{1+k}=d,\\space \\frac{1}{k}=d\\space \\&\\space k(1+k)=d(-k),\\space d=(-1+k)"
Therefore the vectors are not parallel
Comments
Leave a comment