(1) a) Give parametric equation (point-direction form) of the line which lies on both of the planes: x+y+z= 1 and -x+2y + 10z 2. What is the direction d of this line? b) Let ny and n₂ be the normal vectors to the two given planes. Without actual computation, describe the relationship between d and n₁ x n₂.
a) "n_1=\\langle 1, 1, 1\\rangle, n_2=\\langle -1, 2, 10\\rangle"
"=i\\begin{vmatrix}\n 1 & 1 \\\\\n 2 & 10\n\\end{vmatrix}-j\\begin{vmatrix}\n 1 & 1 \\\\\n -1 & 10\n\\end{vmatrix}+k\\begin{vmatrix}\n 1 & 1 \\\\\n -1 & 2\n\\end{vmatrix}"
"=8i-11j+3k"
"d=\\langle 8, -11, 3\\rangle"
"x+y+z= 1""-x+2y + 10z =2"
"x+y+z= 1""3y+11z= 3"
"x_1=0, y_1=1, z_1=0"
"x_2=8, y_2=-10, z_2=3"
"d=\\langle x_2-x_1, y_2-y_1, z_2-z_1\\rangle"
"d=\\langle 8-0, -10-1, 3-0\\rangle"
"d=\\langle 8, -11, 3\\rangle"
b)
"d\\perp n_1, d\\perp n_2"
Comments
Leave a comment