Question #241613

Find an equation for the plane that passes through the point (-7,10,8), is parallel to the line x= 6−t, y= 9 +t, z=−5+ 2t,and intersects the plane 2x+y−z=e^pi^sqrt2at a 30◦angle.



1
Expert's answer
2021-09-26T18:08:32-0400

The equation of the plane will be


a(xx1)+b(yy1)+c(zz1)=0a(x-x_1)+b(y-y_1)+c(z-z_1)=0

Given x1=7,y1=10,z1=8.x_1=-7, y_1=10, z_1=8.

n=a,b,c\vec n=\langle a, b, c \rangle

The plane is parallel to the line x=6t,y=9+t,z=5+2tx= 6−t, y= 9 +t, z=−5+ 2t


n1,1,2=0\vec n\cdot\langle -1, 1, 2\rangle=0

a+b+2c=0-a+b+2c=0

The plane intersects the plane 2x+yz=eπ22x+y−z=e\cdot\pi\cdot\sqrt{2} at a 30°.30\degree. angle.


cos30°=2a+bca2+b2+c24+1+1\cos 30\degree=\dfrac{2a+b-c}{\sqrt{a^2+b^2+c^2}\sqrt{4+1+1}}

9a2+9b2+9c2=2(2a+bc)29a^2+9b^2+9c^2=2(2a+b-c)^2

Let a=1.a=1. Then


b=12cb=1-2c

9+9(12c)2+9c2=2(2+12cc)29+9(1-2c)^2+9c^2=2(2+1-2c-c)^2

9(1+14c+4c2+c2)=2(9)(12c+c2)9(1+1-4c+4c^2+c^2)=2(9)(1-2c+c^2)

5c24c+2=2c24c+25c^2-4c+2=2c^2-4c+2

3c2=0=>c=03c^2=0=>c=0

b=1b=1

Substitute


1(x(7))+1(y10)+0(z8)=01(x-(-7))+1(y-10)+0(z-8)=0x+7+y10=0x+7+y-10=0

The equation of the plane will be


x+y=3x+y=3

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS