Question #241042

The abiscissa of a point in the 4th quadrant is numerically three times its ordinate and is 10 units from (-2,4). Find the point.


1
Expert's answer
2021-09-23T16:54:04-0400

 Let the required point be (x,y).(x,y).  Then

x<0,y<0,x=3yx<0, y<0, x=3y


d2=(x(2)2+(y4)2=102d^2= (x-(-2)^2+(y-4)^2=10^2



(3y+2)2+(y4)2=100(3y+2)^2+(y-4)^2=100

9y2+12y+4+y28y+16100=09y^2+12y+4+y^2-8y+16-100=0

10y2+4y80=010y^2+4y-80=0

5y2+2y40=05y^2+2y-40=0


D=(2)24(5)(40)=804D=(2)^2-4(5)(-40)=804

y=2±8042(5)=1±2015y=\dfrac{-2\pm\sqrt{804}}{2(5)}=\dfrac{-1\pm\sqrt{201}}{5}

Since y<0,y<0, we take y=12015.y=\dfrac{-1-\sqrt{201}}{5}.

x=3(12015)x=3(\dfrac{-1-\sqrt{201}}{5})


Point (3+32015,1+2015)(-\dfrac{3+3\sqrt{201}}{5}, -\dfrac{1+\sqrt{201}}{5})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS