Question #240783

Give parametric equation (point-direction form) of the line which lies on both of the planes:

x + y + z = 1 and −x + 2y + 10z = 2. What is the direction d of this line?

b) Let n1 and n2 be the normal vectors to the two given planes. Without actual computation,

describe the relationship between d and n1 × n2.



1
Expert's answer
2021-09-23T13:34:57-0400

ANSWER: a)The parametric equation of the line passing through P0=(0,1,0)P_{ 0 }=(0,1,0) and parallel to the vector d\overrightarrow { d } :x=8194t, y=111194t, z=3194tx=\frac { 8 }{ \sqrt { 194 } } t,\ y=1-\frac { 11 }{ \sqrt { 194 } } t,\ z=\frac { 3 }{ \sqrt { 194 } } t . d=1194<8, 11,3>,d=1\overrightarrow { d } =\frac { 1 }{ \sqrt { 194 } } \left< 8,\ -11,3 \right> \quad ,\left\| \overrightarrow { d } \right\| =1

b)the vector d\overrightarrow { d } is perpendicular to both normal vector , d n1×n2\overrightarrow { d } \quad \parallel \overrightarrow { \ n1 } \times \overrightarrow { n2 }

EXPLANATION:

a)

The point (a,b,c)(a,b,c) lies on both of the planes, then {a+b+c=1a+2b+10c=2\begin{cases} a+b+c=1 \\ -a+2b+10c=2 \end{cases} . Let c=0c=0 , we have

{a+b=1a+2b=2{a+b=1a+a+b+2b=3{a =0 b =1\begin{cases} a+b=1 \\ -a+2b=2 \end{cases}\quad \Leftrightarrow \quad \begin{cases} a+b=1 \\ -a+a+b+2b=3 \end{cases}\Leftrightarrow \begin{cases} a\ =0 \\ \ b\ =1 \end{cases}\quad . Let a=1a=1 , then b+c=0b+c=0 and 1+8c=2-1+8c=2 . Thus the points (0,1,0),(0,1,0), (1,3/8,3/8)(1,-3/8,3/8) lie on both planes . Therefore the vector D=  (1, 38,38)(0,1,0)=<1, 118,38>\overrightarrow { D } =\ \ \left( 1,\ -\frac { 3 }{ 8 } ,\frac { 3 }{ 8 } \right) -\left( 0,1,0 \right) =\left< 1,\ -\frac { 11 }{ 8 } ,\frac { 3 }{ 8 } \right> determines the direction

of the line of intersection of these planes .Since D=1+12164+964= 19464\left\| \overrightarrow { D } \right\| =\sqrt { 1+\frac { 121 }{ 64 } +\frac { 9 }{ 64 } \quad } =\ \sqrt { \frac { 194 }{ 64 } } , then d=DD=8194<1, 118,38>=1194<8, 11,3>  , d=1.\overrightarrow { d } =\frac { \overrightarrow { D } }{ \left\| \overrightarrow { D } \right\| } =\frac { 8 }{ \sqrt { 194 } } \left< 1,\ -\frac { 11 }{ 8 } ,\frac { 3 }{ 8 } \right> =\frac { 1 }{ \sqrt { 194 } } \left< 8,\ -11,3 \right> \ \ , \ \left\| \overrightarrow { d } \right\| =1. So, the parametric equations of the line passing through the point P0=(0,1,0)P_{ 0 }=(0,1,0) and parallel to d the vector d :\overrightarrow { d } \ :\quad x=8194t,  y=111194t, z=3194t.x=\frac { 8 }{ \sqrt { 194 } } t,\ \ y=1-\frac { 11 }{ \sqrt { 194 } } t,\ z=\frac { 3 }{ \sqrt { 194 } } t.

b)

The plane x+y+z=1x+y+z=1 have normal vector n1=(1,1,1)\overrightarrow { n1 } =(1,1,1) and the plane x+2y+10z=2-x+2y+10z=2 have normal vector n2=(1,2,10).\overrightarrow { n2 } =(-1,2,10). The line is on both planes and thus the line (and the vector d)\overrightarrow { d } ) is perpendicular to both normal vectors.

(verification: n1d=1194(811+3)=0, n2d=1194(822+30)=0)(verification:\ \overrightarrow { n1 } \cdot \overrightarrow { d } =\frac { 1 }{ \sqrt { 194 } } (8-11+3)=0,\ \overrightarrow { n2 } \cdot \overrightarrow { d } =\frac { 1 }{ \sqrt { 194 } } (-8-22+30)=0) \\

So, d  n1×n2\overrightarrow { d } \ \parallel \overrightarrow { \ n1 } \times \overrightarrow { n2 } .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS