a) Find the equation of a plane passing through three non-collinear points (x1,y1,z1),(x2,y2,z2) and (x3,y3,z3).
ax1+by1+cz1=dax2+by2+cz2=dax3+by3+cz3=dThe system has unique solution if and only if
∣∣x1x2x3y1y2y3z1z2z3∣∣=0(b)
Let (x,y,z) be a point in the plane containing the triangle. Then
ax+by+cz=dax1+by1+cz1=dax2+by2+cz2=dax3+by3+cz3=dThen
a(x−x1)+b(y−y1)+c(z−z1)=0a(x2−x1)+b(y2−y1)+c(z2−z1)=0a(x3−x1)+b(y3−y1)+c(z3−z1)=0
System has nonzero solutions for (a,b,c) if
D=∣∣x−x1x2−x1x3−x1y−y1y2−y1y3−y1z−z1z2−z1z3−z1∣∣=0
Comments