Question #239598
Show that the plane 3x+12y=62-17 = 0, touches the conicoid 3x
1
Expert's answer
2021-09-21T02:16:05-0400

Show that the plane 3x+12y6z17=0,3x+12y-6z-17 = 0, touches the conicoid 3x26y2+9z2+17=03x^2-6y^2+9z^2+17=0 and find the point of contact.



F(x,y,z)=3x26y2+9z2+17=0F(x, y, z)=3x^2-6y^2+9z^2+17=0

Fx=6x,Fy=12y,Fz=18zF_x=6x, F_y=-12y, F_z=18z

The equation of the tangent plane is


Fx(xx0)+Fy(yy0)+Fz(zz0)=0F_x(x-x_0)+F_y(y-y_0)+F_z(z-z_0)=0

Substitute


6x0(xx0)12y0(yy0)+18z0(zz0)=06x_0(x-x_0)-12y_0(y-y_0)+18z_0(z-z_0)=0

3x0(xx0)6y0(yy0)+9z0(zz0)=03x_0(x-x_0)-6y_0(y-y_0)+9z_0(z-z_0)=0

3x0x6y0y+9z0z(3x026y02+9z02)=03x_0x-6y_0y+9z_0z-(3x_0^2-6y_0^2+9z_0^2)=0

3x0x6y0y+9z0z+17=03x_0x-6y_0y+9z_0z+17=0

3x0x+6y0y9z0z17=0-3x_0x+6y_0y-9z_0z-17=0

Given the plane 3x+12y6z17=0.3x+12y-6z-17 = 0. Then


x0=1,y0=2,z0=2/3x_0=-1, y_0=2,z_0=2/3

The plane 3x+12y6z17=0,3x+12y-6z-17 = 0, touches the conicoid 3x26y2+9z2+17=03x^2-6y^2+9z^2+17=0 at the point (1,2,2/3).(-1,2,2/3).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS