Show that the plane 3x+12y−6z−17=0, touches the conicoid 3x2−6y2+9z2+17=0 and find the point of contact.
F(x,y,z)=3x2−6y2+9z2+17=0
Fx=6x,Fy=−12y,Fz=18z The equation of the tangent plane is
Fx(x−x0)+Fy(y−y0)+Fz(z−z0)=0 Substitute
6x0(x−x0)−12y0(y−y0)+18z0(z−z0)=0
3x0(x−x0)−6y0(y−y0)+9z0(z−z0)=0
3x0x−6y0y+9z0z−(3x02−6y02+9z02)=0
3x0x−6y0y+9z0z+17=0
−3x0x+6y0y−9z0z−17=0
Given the plane 3x+12y−6z−17=0. Then
x0=−1,y0=2,z0=2/3The plane 3x+12y−6z−17=0, touches the conicoid 3x2−6y2+9z2+17=0 at the point (−1,2,2/3).
Comments