Given the parabola (y-1)2 = 1/2(x-3),
find;
i. The coordinates of the vertex
ii. The coordinates of the focus
iii. The equation of the directrix
iv. The equation of the axis of symmetry
v. The ends of the latus rectum
vi. The parametric equations of the parabola
vii. Sketch the parabola, clearly showing the focus, vertex, directrix, axis of symmetry, and the x-intercept.
Solution:
Given, "\\left(y-1\\right)^2=\\frac{1}{2}\\left(x-3\\right)"
"4p\\left(x-h\\right)=\\left(y-k\\right)^2\\:\\\\\\mathrm{\\:is\\:the\\:standard\\:equation\\:for\\:a\\:right-left\\:facing\\:parabola\\\\\\:with\\:vertex\\:at} \\left(h,\\:k\\right),\\:\n\\\\\\mathrm{and\\:a\\:focal\\:length\\:}\\:|p|"
Rewriting,
"4\\cdot\\frac18(x-3)=(y-1)^2"
On comparing, "\\left(h,\\:k\\right)=\\left(3,\\:1\\right),\\:p=\\frac{1}{8}"
i. The coordinates of the vertex = (3,1)
ii.
"\\mathrm{Parabola\\:is\\:symmetric\\:around\\:the\\:x-axis\\:and\\:so\\:the\\:focus\\:lies\\:a\\:distance\\:}p\n\\\\\\mathrm{\\:from\\:the\\:center\\:}\\left(3,\\:1\\right)\\mathrm{\\:along\\:the\\:x-axis}"
"\\left(3+p,\\:1\\right)=\\left(3+\\frac{1}{8},\\:1\\right)=\\left(\\frac{25}{8},\\:1\\right)"
So, the coordinates of the focus"=\\left(\\frac{25}{8},\\:1\\right)"
iii.
"Parabola\\:is\\:symmetric\\:around\\:the\\:x-axis\\:and\\:so\\:the\\:directrix\\:is\\:a\\:line\\:parallel\n\\\\\\:to\\:the\n\\:y-axis,\\:a\\:distance\\:-p\\mathrm{\\:from\\:the\\:center\\:}\\left(3,\\:1\\right)\\mathrm{\\:x-coordinate}\\:"
"x=3-p=3-\\frac18\n\\\\\\Rightarrow x=\\frac{23}8"
The equation of the directrix: "x=\\frac{23}8"
iv.
"\\mathrm{Parabola\\:is\\:of\\:the\\:form\\:}4p\\left(x-h\\right)=\\left(y-k\\right)^2\\mathrm{\\:and\\:is\\:symmetric\\:around\\:the\\:}x\\mathrm{-axis}"
"\\mathrm{Axis\\:of\\:symmetry\\:is\\:a\\:line\\:parallel\\:to\\:the\\:}x\\mathrm{-axis\\:which\\:intersects\\:the\\:vertex:}\n\\\\y=1"
The equation of the axis of symmetry: y=1
v. The ends of the latus rectum: "x=\\frac{25}8"
vi.
"\\text{The parametric equations of the parabola}\\ (y - k)^2 = 4p(x - h)\\ are\n\\\\ x = h + pt^2\\ and\\ y = k + 2pt."
"\\left(h,\\:k\\right)=\\left(3,\\:1\\right),\\:p=\\frac{1}{8}"
So, "x=3+\\frac18t^2,y=1+2(\\frac18)t"
The parametric equations of the parabola: "x=3+\\frac18t^2,y=1+\\frac14t"
vii. Graph:
Comments
Leave a comment