The line y = 2 x + 3 y=2x+3 y = 2 x + 3 does not pass through the point N ( 5 , 5 ) N(5,5) N ( 5 , 5 )
2 ( 5 ) + 3 = 13 ≠ 5 2(5)+3=13\not=5 2 ( 5 ) + 3 = 13 = 5 Assume that the problem is:
Find the center and radius of the circle that passes through M ( 3 , 3 ) M(3,3) M ( 3 , 3 ) and is tangent to the line y = 2 x + 3 y=2x+3 y = 2 x + 3 at point N ( 1 , 5 ) N(1,5) N ( 1 , 5 )
The general equation for a circle is ( x − h ) 2 + ( y − k ) 2 = r 2 , ( x - h )^2 + ( y - k )^2 = r^2, ( x − h ) 2 + ( y − k ) 2 = r 2 , where C ( h , k ) C( h, k) C ( h , k ) is the center and r r r is the radius.
The circle that passes through M ( 3 , 3 ) M(3,3) M ( 3 , 3 )
( 3 − h ) 2 + ( 3 − k ) 2 = r 2 ( 3 - h )^2 + (3 - k )^2 = r^2 ( 3 − h ) 2 + ( 3 − k ) 2 = r 2 The circle that passes through N ( 1 , 5 ) N(1,5) N ( 1 , 5 )
( 1 − h ) 2 + ( 5 − k ) 2 = r 2 ( 1 - h )^2 + (5 - k )^2 = r^2 ( 1 − h ) 2 + ( 5 − k ) 2 = r 2
The line segment C N CN CN is perpendicular to the line y = 2 x + 3 y=2x+3 y = 2 x + 3
s l o p e 1 ( s l o p e 2 ) = − 1 slope_1(slope_2)=-1 s l o p e 1 ( s l o p e 2 ) = − 1
y N − y C x N − x C ( 2 ) = − 1 \dfrac{y_N-y_C}{x_N-x_C}(2)=-1 x N − x C y N − y C ( 2 ) = − 1
5 − k 1 − h = − 1 2 \dfrac{5-k}{1-h}=-\dfrac{1}{2} 1 − h 5 − k = − 2 1
10 − 2 k = − 1 + h 10-2k=-1+h 10 − 2 k = − 1 + h
h = 11 − 2 k h=11-2k h = 11 − 2 k
( 3 − h ) 2 + ( 3 − k ) 2 = ( 1 − h ) 2 + ( 5 − k ) 2 ( 3 - h )^2 + (3 - k )^2 =( 1 - h )^2 + (5 - k )^2 ( 3 − h ) 2 + ( 3 − k ) 2 = ( 1 − h ) 2 + ( 5 − k ) 2
9 − 6 h + h 2 + 9 − 6 k + k 2 9-6h+h^2+9-6k+k^2 9 − 6 h + h 2 + 9 − 6 k + k 2 = 1 − 2 h + h 2 + 25 − 10 k + k 2 =1-2h+h^2+25-10k+k^2 = 1 − 2 h + h 2 + 25 − 10 k + k 2
18 − 6 h − 6 k = 26 − 2 h − 10 k 18-6h-6k=26-2h-10k 18 − 6 h − 6 k = 26 − 2 h − 10 k
4 h = − 8 + 4 k 4h=-8+4k 4 h = − 8 + 4 k
h = − 2 + k h=-2+k h = − 2 + k Substitute
− 2 + k = 11 − 2 k -2+k=11-2k − 2 + k = 11 − 2 k
k = 13 3 k=\dfrac{13}{3} k = 3 13
h = 7 3 h=\dfrac{7}{3} h = 3 7
( 3 − 7 3 ) 2 + ( 3 − 13 3 ) 2 = r 2 ( 3 - \dfrac{7}{3} )^2 + (3 - \dfrac{13}{3} )^2 = r^2 ( 3 − 3 7 ) 2 + ( 3 − 3 13 ) 2 = r 2
r 2 = 20 9 r^2=\dfrac{20}{9} r 2 = 9 20 The center of the circle is C ( 7 3 , 13 3 ) . C( \dfrac{7}{3},\dfrac{13}{3}). C ( 3 7 , 3 13 ) . The radius of the circle is 2 5 3 . \dfrac{2\sqrt{5}}{3}. 3 2 5 .
The general equation of the circle is
( x − 7 3 ) 2 + ( y − 13 3 ) 2 = 20 9 (x-\dfrac{7}{3})^2 + ( y-\dfrac{13}{3} )^2 = \dfrac{20}{9} ( x − 3 7 ) 2 + ( y − 3 13 ) 2 = 9 20
Comments