if two straight line represented by the equation x2(tan2 + cos2 )-2xytan +y2 sin2=0 makes angle A and B with x axis respectively ,than show that tan A - tan B
"y^2\\sin^2\u03b8\u22122xy\\tan\u03b8+x ^2(\\tan^2\u03b8+\\cos^2\u03b8)=0"
"y=\\dfrac{-x\\tan\u03b8\\pm\\sqrt{(x\\tan\u03b8)^2-\\sin^2\u03b8(x ^2(\\tan^2\u03b8+\\cos^2\u03b8))}}{\\sin^2\u03b8}"
"=\\dfrac{-x\\tan\u03b8\\pm x\\cos \\theta\\sqrt{\\tan^2\u03b8-\\sin^2\u03b8}}{\\sin^2\u03b8}"
"=\\dfrac{-x\\tan\u03b8\\pm x\\sin^2 \\theta}{\\sin^2\u03b8}"
"y_1=(\\dfrac{-\\tan\\theta}{\\sin^2\u03b8}+1)x=(\\tan A)x"
"y_2=(\\dfrac{-\\tan\\theta}{\\sin^2\u03b8}-1)x=(\\tan B)x"
Then
"\\tan A-\\tan B=2"
Comments
Leave a comment