Find the Cartesian equation of the curve C traced out by a point whose coordinates, in terms of a parameter θ, are (a cos θ, b sin θ). Obtain the equations of the tangents at θ = θ1 and θ = θ1 + π/2. Find the coordinates of the points of intersection of the two tangents, and deduce the Cartesian equation of its locus.
Solution:
Given curve constrained by point acos θ , bsin θ
Now "x = a cos \u03b8 ; y = b sin \u03b8 \u21d2 x a = cos \u03b8 , y b = sin \u03b8 \u21d2 x a ^2 + y b ^2 = 1" This is equation of ellipse
Now at point "\\theta"
"(x_1,y_1) =(acos \\theta, b sin \\theta)"
Hence the equation of the tangent
"\\frac{acos \\theta_1 x}{a^2}+\\frac{bsin \\theta_1 y}{b^2}=1\\\\\n\\frac{xcos \\theta_1 x}{a}+\\frac{ysin \\theta_1}{b}=1"
Now the equation of tangent at point "\\theta ;\\theta_1 +\\frac{\\pi}{2}"
"(a \\cos \\theta, b \\sin \\theta) = (a \\cos(\\theta_1 +\\frac{\\pi}{2}), b \\sin (\\theta_1 +\\frac{\\pi}{2}))\\\\\n= (-a \\sin \\theta_1, b \\cos\\theta_1)"
Now equation of tangent
"-\\frac{x\\sin \\theta_1}{a}+\\frac{y\\cos \\theta_1}{b}=1"
The intersection point of both tangents
"x= (1- \\frac{u \\sin \\theta}{b}) \\frac{a}{\\cos \\theta_1}\\\\\n-\\frac{\\sin \\theta_1}{a}(1- \\frac{u \\sin \\theta}{b}) \\frac{a}{\\cos \\theta_1}+\\frac{y \\cos \\theta _1}{b}=1\\\\\ny= b(\\sin \\theta_1 +\\cos \\theta_1)\\\\\nSimilarly \\\\\nx= a(\\cos \\theta_1 -\\sin\\theta_1)\\\\"
Hence intersection point
"x= a(\\cos \\theta_1 -\\sin\\theta_1)\\\\\ny= b(\\sin \\theta_1 +\\cos \\theta_1)\\\\"
Locus of intersection point
"\\frac{x^2}{a^2}+\\frac{y^2}{b^2}=2"
Comments
Leave a comment