Question #224010

A point moves in the Oxy−plane so that the sum of its distances from the points S(2, 2) and S′(6, 2) is 16. Find the equation of the curve traced by the point.


1
Expert's answer
2021-08-16T10:48:36-0400

This is the classic problem to derive the equation of an ellipse with foci at (2, 2) and (6, 2).Call a point on the curve (x, y). Then the distance formula says: (x  2)2 + (y  2)2 + (x  6)2 + (y  2)2 = 16Get rid of the radicals: x2 + y2  4x  4y + 8 + x2 + y2  12x  4y + 40 = 16 x2 + y2  4x  4y + 8 = 16  x2 + y2  12x  4y + 40 x2 + y2  4x  4y + 8 = (16  x2 + y2  12x  4y + 40)2 x2 + y2  4x  4y + 8 = 256   32 x2 + y2  12x  4y + 40 + (x2 + y2  12x  4y + 40) 32 x2 + y2  12x  4y + 40 = 288  8x = 8(36  x) 4 x2 + y2  12x  4y + 40 = 36  x 16 (x2 + y2  12x  4y + 40) = (36  x)2 16x2 + 16y2  192x  64y + 640 = 1296  72x + x2 15x2  120x + 16y2  64y = 656Now complete the square on x and y: 15(x2  8x) + 16(y2  4y) = 656 15(x2  8x + 16) + 16(y2  4y + 4) = 656 + 15  16 + 16  4 15(x  4)2 + 16(y  2)2 = 960Divide both sides by 960: (x  4)264 + (y  2)260 = 1hence this represents the equation of an ellipse. This \space is \space the \space classic \space problem \space to \space derive \space the \space equation \space of \space an \space ellipse \space \\ with \space foci \space at \space (2, \space 2) \space and \space (6, \space 2).\\ Call \space a \space point \space on \space the \space curve \space (x, \space y). \space Then \space the \space distance \space formula \space says:\\ \displaystyle \space \sqrt{(x \space - \space 2)^2 \space + \space (y \space - \space 2)^2} \space + \space \sqrt{(x \space - \space 6)^2 \space + \space (y \space - \space 2)^2} \space = \space 16\\ Get \space rid \space of \space the \space radicals:\\ \displaystyle \space \sqrt{x^2 \space + \space y^2 \space - \space 4x \space - \space 4y \space + \space 8} \space + \space \sqrt{x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40} \space = \space 16\\ \displaystyle \space \sqrt{x^2 \space + \space y^2 \space - \space 4x \space - \space 4y \space + \space 8} \space = \space 16 \space - \space \sqrt{x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40}\\ \displaystyle \space x^2 \space + \space y^2 \space - \space 4x \space - \space 4y \space + \space 8 \space = \space (16 \space - \space \sqrt{x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40})^2\\ \displaystyle \space x^2 \space + \space y^2 \space - \space 4x \space - \space 4y \space + \space 8 \space = \space 256 \space - \space \displaystyle \space 32 \space \sqrt{x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40} \space + \space (x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40)\\ \displaystyle \space 32 \space \sqrt{x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40} \space = \space 288 \space - \space 8x \space = \space 8(36 \space - \space x)\\ \displaystyle \space 4 \space \sqrt{x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40} \space = \space 36 \space - \space x\\ \displaystyle \space 16 \space (x^2 \space + \space y^2 \space - \space 12x \space - \space 4y \space + \space 40) \space = \space (36 \space - \space x)^2\\ \displaystyle \space 16x^2 \space + \space 16y^2 \space - \space 192x \space - \space 64y \space + \space 640 \space = \space 1296 \space - \space 72x \space + \space x^2\\ \displaystyle \space 15x^2 \space - \space 120x \space + \space 16y^2 \space - \space 64y \space = \space 656\\ Now \space complete \space the \space square \space on \space x \space and \space y:\\ \displaystyle \space 15(x^2 \space - \space 8x) \space + \space 16(y^2 \space - \space 4y) \space = \space 656\\ \displaystyle \space 15(x^2 \space - \space 8x \space + \space 16) \space + \space 16(y^2 \space - \space 4y \space + \space 4) \space = \space 656 \space + \space 15 \space \cdot \space 16 \space + \space 16 \space \cdot \space 4\\ \displaystyle \space 15(x \space - \space 4)^2 \space + \space 16(y \space - \space 2)^2 \space = \space 960\\ Divide \space both \space sides \space by \space 960:\\ \displaystyle \space \frac{(x \space - \space 4)^2}{64} \space + \space \frac{(y \space - \space 2)^2}{60} \space = \space 1\\ hence \space this \space represents \space the \space equation \space of \space an \space ellipse. \space \\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS