Write down the parametric equations of the following ellipses. Find their eccentricities, foci and directrices. (a) 4x2 + 9y2 = 4 (b) x2/9 + y2/16 = 1 (c) x2/7 + y2/14 = 1
(a)
"4x^2+9y^2=4""\\dfrac{x^2}{1}+\\dfrac{y^2}{4\/9}=1"
"x=\\cos t, y=\\dfrac{2}{3}\\sin t, 0\\leq t\\leq 2\\pi"
"\\vec r=\\langle\\cos t, \\dfrac{2}{3}\\sin t\\rangle, 0\\leq t\\leq 2\\pi"
"a=1, b=\\dfrac{2}{3}, c=\\sqrt{a^2-b^2}=\\sqrt{(1)^2-(\\dfrac{2}{3})^2}=\\dfrac{\\sqrt{5}}{3}"
"Foci: (-\\dfrac{\\sqrt{5}}{3}, 0), (\\dfrac{\\sqrt{5}}{3}, 0)"
"Directrices: x=\\pm\\dfrac{a^2}{c}"
"first\\ directrix: x=-\\dfrac{3\\sqrt{5}}{5},"
"second\\ directrix:x=\\dfrac{3\\sqrt{5}}{5}"
(b)
"\\dfrac{x^2}{9}+\\dfrac{y^2}{16}=1""x=3\\cos t, y=4\\sin t, 0\\leq t\\leq 2\\pi"
"\\vec r=\\langle3\\cos t, 4\\sin t\\rangle, 0\\leq t\\leq 2\\pi"
"a=4, b=3, c=\\sqrt{a^2-b^2}=\\sqrt{(4)^2-(3)^2}=\\sqrt{7}"
"Foci: (-\\sqrt{7}, 0), (\\sqrt{7}, 0)"
"Directrices: y=\\pm\\dfrac{a^2}{c}"
"first\\ directrix: y=-\\dfrac{16\\sqrt{7}}{7},"
"second\\ directrix:y=\\dfrac{16\\sqrt{7}}{7}"
(c)
"\\dfrac{x^2}{7}+\\dfrac{y^2}{14}=1""x=\\sqrt{7}\\cos t, y=\\sqrt{14}\\sin t, 0\\leq t\\leq 2\\pi"
"\\vec r=\\langle\\sqrt{7}\\cos t, \\sqrt{14}\\sin t\\rangle, 0\\leq t\\leq 2\\pi"
"a=\\sqrt{14}, b=\\sqrt{7}, c=\\sqrt{a^2-b^2}=\\sqrt{(\\sqrt{14})^2-(\\sqrt{7})^2}=\\sqrt{7}""e=\\dfrac{c}{a}=\\dfrac{\\sqrt{2}}{2}"
"Foci: (-\\sqrt{7}, 0), (\\sqrt{7}, 0)"
"Directrices: y=\\pm\\dfrac{a^2}{c}"
"first\\ directrix: y=-2\\sqrt{7},"
"second\\ directrix:y=2\\sqrt{7}"
Comments
Leave a comment