Question #224006

Write down the parametric equations of the following ellipses. Find their eccentricities, foci and directrices. (a) 4x2 + 9y2 = 4 (b) x2/9 + y2/16 = 1 (c) x2/7 + y2/14 = 1


1
Expert's answer
2021-08-13T12:48:18-0400

(a)

4x2+9y2=44x^2+9y^2=4

x21+y24/9=1\dfrac{x^2}{1}+\dfrac{y^2}{4/9}=1

x=cost,y=23sint,0t2πx=\cos t, y=\dfrac{2}{3}\sin t, 0\leq t\leq 2\pi

r=cost,23sint,0t2π\vec r=\langle\cos t, \dfrac{2}{3}\sin t\rangle, 0\leq t\leq 2\pi

a=1,b=23,c=a2b2=(1)2(23)2=53a=1, b=\dfrac{2}{3}, c=\sqrt{a^2-b^2}=\sqrt{(1)^2-(\dfrac{2}{3})^2}=\dfrac{\sqrt{5}}{3}


e=ca=53e=\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}

Foci:(53,0),(53,0)Foci: (-\dfrac{\sqrt{5}}{3}, 0), (\dfrac{\sqrt{5}}{3}, 0)

Directrices:x=±a2cDirectrices: x=\pm\dfrac{a^2}{c}

first directrix:x=355,first\ directrix: x=-\dfrac{3\sqrt{5}}{5},

second directrix:x=355second\ directrix:x=\dfrac{3\sqrt{5}}{5}

(b)

x29+y216=1\dfrac{x^2}{9}+\dfrac{y^2}{16}=1

x=3cost,y=4sint,0t2πx=3\cos t, y=4\sin t, 0\leq t\leq 2\pi

r=3cost,4sint,0t2π\vec r=\langle3\cos t, 4\sin t\rangle, 0\leq t\leq 2\pi

a=4,b=3,c=a2b2=(4)2(3)2=7a=4, b=3, c=\sqrt{a^2-b^2}=\sqrt{(4)^2-(3)^2}=\sqrt{7}


e=ca=74e=\dfrac{c}{a}=\dfrac{\sqrt{7}}{4}

Foci:(7,0),(7,0)Foci: (-\sqrt{7}, 0), (\sqrt{7}, 0)

Directrices:y=±a2cDirectrices: y=\pm\dfrac{a^2}{c}

first directrix:y=1677,first\ directrix: y=-\dfrac{16\sqrt{7}}{7},

second directrix:y=1677second\ directrix:y=\dfrac{16\sqrt{7}}{7}


(c)

x27+y214=1\dfrac{x^2}{7}+\dfrac{y^2}{14}=1

x=7cost,y=14sint,0t2πx=\sqrt{7}\cos t, y=\sqrt{14}\sin t, 0\leq t\leq 2\pi

r=7cost,14sint,0t2π\vec r=\langle\sqrt{7}\cos t, \sqrt{14}\sin t\rangle, 0\leq t\leq 2\pi

a=14,b=7,c=a2b2=(14)2(7)2=7a=\sqrt{14}, b=\sqrt{7}, c=\sqrt{a^2-b^2}=\sqrt{(\sqrt{14})^2-(\sqrt{7})^2}=\sqrt{7}e=ca=22e=\dfrac{c}{a}=\dfrac{\sqrt{2}}{2}

Foci:(7,0),(7,0)Foci: (-\sqrt{7}, 0), (\sqrt{7}, 0)

Directrices:y=±a2cDirectrices: y=\pm\dfrac{a^2}{c}

first directrix:y=27,first\ directrix: y=-2\sqrt{7},

second directrix:y=27second\ directrix:y=2\sqrt{7}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS