The tangent at the point P(θ) on the ellipse x2/4+y2/3 = 1 passes through the point A(2, 1). Show that √3cosθ + sin θ = √3. Find all the solutions of this equation which are in the range 0 ≤ θ < 2π. Hence find the coordinates of the points of contact of the tangents to the ellipse from A.
"x=2\\cos \\theta, y=\\sqrt{3}\\sin \\theta"
"y_{x}'=\\dfrac{y'_{\\theta}}{x'_{\\theta}}=-\\dfrac{\\sqrt{3}\\cos \\theta}{2\\sin \\theta}"
"slope=-\\dfrac{\\sqrt{3}\\cos \\theta}{2\\sin \\theta}"
"y-\\sqrt{3}\\sin \\theta=-\\dfrac{\\sqrt{3}\\cos \\theta}{2\\sin \\theta}(x-2\\cos \\theta)"
"2\\sin \\theta( y-\\sqrt{3}\\sin \\theta)=-\\sqrt{3}\\cos \\theta(x-2\\cos \\theta)"
The equation of the tangent line at the point "P(\\theta)" to the ellipse is
Point "A(2, 1)"
"\\sqrt{3}\\cos \\theta+\\sin \\theta=\\sqrt{3}"
Then
"\\sin\\dfrac{\\pi}{3}\\cos \\theta+\\cos\\dfrac{\\pi}{3}\\sin \\theta=\\dfrac{\\sqrt{3}}{2}, 0\\leq\\theta\\leq2\\pi"
"\\sin(\\dfrac{\\pi}{3}+\\theta)=\\dfrac{\\sqrt{3}}{2}"
"\\dfrac{\\pi}{3}\\leq\\dfrac{\\pi}{3}+\\theta\\leq\\dfrac{7\\pi}{3}"
"\\dfrac{\\pi}{3}+\\theta=\\dfrac{\\pi}{3}=>\\theta=0"
Or
Or
"\\{0, \\dfrac{\\pi}{3}, 2\\pi\\}"
Comments
Leave a comment