The perpendicular OY is drawn from the centre O of the ellipse x2/a2 + y2/b2 = 1 to any tangent. Prove that the locus of Y is (x2 + y2 )2 = a2x2 + b2 y2.
Let p(x,y) be the foot of perpendicular to a tangent
"y=mx\\pm \\sqrt{a^2m^2+b^2}\\cdots (1)\\\\" from Centre
slope of OY = "\\frac{-1}{m}\\\\"
Equation of OY is
"y=\\frac{-1x}{m} \\implies m=\\frac{-x}{y} \\cdots (2)"
p(x,y) lies on tangent,
"y=\\frac{-x}{y}.x\\pm\\sqrt{a^2(\\frac{-x}{y})^2+b^2}\\\\\ny=\\frac{-x}{y}.x\\pm\\sqrt{a^2\\frac{x^2}{y^2}+b^2}\\\\\ny=\\frac{-x}{y}\\pm\\sqrt{\\frac{a^2x^2+b^2y^2}{y^2}}\\\\\ny^2+x^2=\\pm\\sqrt{a^2x^2+b^2y^2}\\\\\n(x^2+y^2)^2=x^2a^2+b^2y^2."
Comments
Leave a comment