4 x 2 + 9 y 2 = 36 4x^2+9y^2=36 4 x 2 + 9 y 2 = 36 Differrentiate borh sides with respect to x x x
8 x + 18 y y ′ = 0 8x+18yy'=0 8 x + 18 y y ′ = 0
y ′ = − 4 x 9 y y'=-\dfrac{4x}{9y} y ′ = − 9 y 4 x
s l o p e = m = − 4 x 0 9 y 0 slope=m=-\dfrac{4x_0}{9y_0} s l o p e = m = − 9 y 0 4 x 0
The equation of the tangent to the ellipse is
y − y 0 = m ( x − x 0 ) y-y_0=m(x-x_0) y − y 0 = m ( x − x 0 )
y = m x − m x 0 + y 0 y=mx-mx_0+y_0 y = m x − m x 0 + y 0
x 0 = − 9 y 0 4 m x_0=-\dfrac{9y_0}{4}m x 0 = − 4 9 y 0 m
y 0 − m x 0 = y 0 ( 4 + 9 m 2 ) 4 y_0-mx_0=\dfrac{y_0(4+9m^2)}{4} y 0 − m x 0 = 4 y 0 ( 4 + 9 m 2 )
4 x 0 2 + 9 y 0 2 = 36 4x_0^2+9y_0^2=36 4 x 0 2 + 9 y 0 2 = 36
81 y 0 2 4 m 2 + 9 y 0 2 = 36 \dfrac{81y_0^2}{4}m^2+9y_0^2=36 4 81 y 0 2 m 2 + 9 y 0 2 = 36
y 0 2 ( 9 m 2 + 4 ) = 16 y_0^2(9m^2+4)=16 y 0 2 ( 9 m 2 + 4 ) = 16
y 0 4 = ± 1 9 m 2 + 4 \dfrac{y_0}{4}=\pm\dfrac{1}{\sqrt{9m^2+4}} 4 y 0 = ± 9 m 2 + 4 1
y = m x ± 9 m 2 + 4 y=mx\pm\sqrt{9m^2+4} y = m x ± 9 m 2 + 4
Point ( − 2 , − 3 ) (-2, -3) ( − 2 , − 3 )
− 3 = m ( − 2 ) ± 9 m 2 + 4 -3=m(-2)\pm\sqrt{9m^2+4} − 3 = m ( − 2 ) ± 9 m 2 + 4
2 m − 3 = ± 9 m 2 + 4 2m-3=\pm\sqrt{9m^2+4} 2 m − 3 = ± 9 m 2 + 4
4 m 2 − 12 m + 9 = 9 m 2 + 4 4m^2-12m+9=9m^2+4 4 m 2 − 12 m + 9 = 9 m 2 + 4
5 m 2 + 12 m − 5 = 0 5m^2+12m-5=0 5 m 2 + 12 m − 5 = 0
m 1 m 2 = − 5 5 = − 1 m_1m_2=\dfrac{-5}{5}=-1 m 1 m 2 = 5 − 5 = − 1 Therefore the tangents from the point with position vector − 2 i − 3 j -2i-3j − 2 i − 3 j to the ellipse 4 x 2 + 9 y 2 = 36 4x^2+9y^2=36 4 x 2 + 9 y 2 = 36 are perpendicular.
Comments