(a)
( a ) x = 1 + t , y = − 1 − t , z = − 2 t , a ⃗ = ( 1 , − 1 , − 2 ) ( α ) x + 2 y + 3 z − 9 = 0 , n ⃗ = ( 1 , 2 , 3 ) n ⃗ ⋅ a ⃗ = 1 ⋅ 1 + ( − 1 ) ⋅ 2 + ( − 2 ) ⋅ 3 = − 7 ≠ 0 (a) x=1+t,y=-1-t,z=-2t, \vec{a}=(1,-1,-2)\\
(\alpha) x+2y+3z-9=0, \vec{n}=(1,2,3)\\
\vec{n}\cdot\vec{a}=1\cdot1+(-1)\cdot2+(-2)\cdot3=-7\neq 0 ( a ) x = 1 + t , y = − 1 − t , z = − 2 t , a = ( 1 , − 1 , − 2 ) ( α ) x + 2 y + 3 z − 9 = 0 , n = ( 1 , 2 , 3 ) n ⋅ a = 1 ⋅ 1 + ( − 1 ) ⋅ 2 + ( − 2 ) ⋅ 3 = − 7 = 0
The given line and the given plane are not parallel.
(b)
( a ) < 0 , 1 , 2 > + t < 3 , 2 , − 1 > , a ⃗ = ( 3 , 2 , − 1 ) ( α ) 4 x − y + 2 z + 1 = 0 , n ⃗ = ( 4 , − 1 , 2 ) n ⃗ ⋅ a ⃗ = 3 ⋅ 4 + 2 ⋅ ( − 1 ) + ( − 1 ) ⋅ 2 = 8 ≠ 0 (a) <0,1,2>+t<3,2,-1>, \vec{a}=(3,2,-1)\\
(\alpha) 4x-y+2z+1=0, \vec{n}=(4,-1,2)\\
\vec n\cdot\vec a=3\cdot4+2\cdot(-1)+(-1)\cdot 2=8\neq0 ( a ) < 0 , 1 , 2 > + t < 3 , 2 , − 1 > , a = ( 3 , 2 , − 1 ) ( α ) 4 x − y + 2 z + 1 = 0 , n = ( 4 , − 1 , 2 ) n ⋅ a = 3 ⋅ 4 + 2 ⋅ ( − 1 ) + ( − 1 ) ⋅ 2 = 8 = 0
The given line and the given plane are not parallel.
Comments