(1.1) Determine whether the given line and the given plane are parallel:
(a) x = 1 + t, y = −1 − t, z = −2t and x + 2y + 3z − 9 = 0,
(b) < 0, 1, 2 > +t < 3, 2, −1 > and 4x − y + 2z + 1 = 0.
(a)
(a)x=1+t,y=−1−t,z=−2t,a⃗=(1,−1,−2)(α)x+2y+3z−9=0,n⃗=(1,2,3)n⃗⋅a⃗=1⋅1+(−1)⋅2+(−2)⋅3=−7≠0(a) x=1+t,y=-1-t,z=-2t, \vec{a}=(1,-1,-2)\\ (\alpha) x+2y+3z-9=0, \vec{n}=(1,2,3)\\ \vec{n}\cdot\vec{a}=1\cdot1+(-1)\cdot2+(-2)\cdot3=-7\neq 0(a)x=1+t,y=−1−t,z=−2t,a=(1,−1,−2)(α)x+2y+3z−9=0,n=(1,2,3)n⋅a=1⋅1+(−1)⋅2+(−2)⋅3=−7=0
The given line and the given plane are not parallel.
(b)
(a)<0,1,2>+t<3,2,−1>,a⃗=(3,2,−1)(α)4x−y+2z+1=0,n⃗=(4,−1,2)n⃗⋅a⃗=3⋅4+2⋅(−1)+(−1)⋅2=8≠0(a) <0,1,2>+t<3,2,-1>, \vec{a}=(3,2,-1)\\ (\alpha) 4x-y+2z+1=0, \vec{n}=(4,-1,2)\\ \vec n\cdot\vec a=3\cdot4+2\cdot(-1)+(-1)\cdot 2=8\neq0(a)<0,1,2>+t<3,2,−1>,a=(3,2,−1)(α)4x−y+2z+1=0,n=(4,−1,2)n⋅a=3⋅4+2⋅(−1)+(−1)⋅2=8=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments