Question 7
(7.1) (Find a point-normal form of the equation of the plane passing
through P = (1,2,−3) and having n =< 2,−1,2 > as a normal.
(7.2) Determine in each case whether the given planes are parallel or
perpendicular: (a) x +y +3z +10=0andx +2y −z =1,
(b)3x −2y +z −6=0 and 4x +2y −4z =0, (c)3x +y +z −1=0 and−x +2y
+z+3=0,
(d)x −3y +z+1=0 and 3x −4y +z−1=0.
(7.1)
Point-normal form of the plane is
We can also write this as
(7.2)
(a). x+y+3z+10=0 and x+2y-z=1
The vectors "\\vec n_1" and "\\vec n_2" are not collinear.
The vectors "\\vec n_1" and "\\vec n_2" are orthogonal.
Hence, the given planes are perpendicular.
(b). 3x-2y+z-6=0 and 4x+2y-4z=0
The vectors "\\vec n_1" and "\\vec n_2" are not collinear.
The vectors "\\vec n_1" and "\\vec n_2" are not orthogonal.
Hence, the given planes are neither parallel nor perpendicular.
(c). 3x+y+z-1=0 and -x+2y+z+3=0
The vectors "\\vec n_1" and "\\vec n_2" are not collinear.
The vectors "\\vec n_1" and "\\vec n_2" are orthogonal.
Hence, the given planes are perpendicular.
(d). x-3y+z+1=0 and 3x-4y+z-1=0
The vectors "\\vec n_1" and "\\vec n_2" are not collinear.
The vectors "\\vec n_1" and "\\vec n_2" are not orthogonal.
Hence, the given planes are neither parallel nor perpendicular.
Comments
Leave a comment