1.Assume that a vector a of length ||a||=3 units.in addition, a points in a direction that is 135° counter-clockwise from the positive x-axis, and a vector b in the xy plane has a length ||b||=1/3 and points in the positive y-direction.
1.1.find a.b.
1.2.calculate the distance between the point (-1,√3) and the line 2x-2y-5=0.
"\\vec b=\\langle0,\\dfrac{1}{3}\\rangle"
"\\vec a\\cdot \\vec b=3(-\\dfrac{\\sqrt{2}}{2})(0)+3(\\dfrac{\\sqrt{2}}{2})(\\dfrac{1}{3})=\\dfrac{\\sqrt{2}}{2}"
Or
Angle between two vectors "\\angle(\\vec a, \\vec b)=135\\degree-90\\degree =45\\degree"
"\\vec a\\cdot \\vec b=|\\vec a||\\vec b|\\cos(\\angle(\\vec a\\cdot \\vec b))""=3(\\dfrac{1}{3})\\cos 45\\degree=\\dfrac{\\sqrt{2}}{2}"
"\\vec a\\cdot \\vec b=\\dfrac{\\sqrt{2}}{2}"
b)
Point "(-1, 3): x_0=-1, y_0=3"
Line "2x - 2y-5=0"
"d=\\dfrac{|2(-1)-2(3)-5|}{\\sqrt{(2)^2+(-2)^2}}=\\dfrac{13\\sqrt{2}}{4}"The distance is "\\dfrac{13\\sqrt{2}}{4}."
Comments
Leave a comment