Let ~u =< −2, 1, −1, ~v =< −3, 2, −1 > and w~ =< 1, 3, 5 >. Compute:
(6.1) ~u × w~ ,
(6.2) ~u × (w~ × ~v) and (~u × w~ ) × ~v.
(6.1)
"=\\vec i\\begin{vmatrix}\n 1 & -1 \\\\\n 3 & 5\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n -2 & -1 \\\\\n 1 & 5\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n -2 & 1 \\\\\n 1 & 3\n\\end{vmatrix}"
"=8\\vec i+9\\vec j-7\\vec k"
"\\vec u\\times \\vec w=\\langle8, 9, -7\\rangle"
(6.2)
"\\vec w\\times \\vec v=\\begin{vmatrix}\n \\vec i & \\vec j & \\vec k \\\\\n 1 & 3 & 5 \\\\\n -3 & 2 & -1 \\\\\n\\end{vmatrix}""=\\vec i\\begin{vmatrix}\n 3 & 5 \\\\\n 2 & -1\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n 1 & 5 \\\\\n -3 & -1\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n 1 & 3 \\\\\n -3 & 2\n\\end{vmatrix}"
"=-13\\vec i-14\\vec j+11\\vec k"
"\\vec u\\times (\\vec w\\times \\vec v)=\\begin{vmatrix}\n \\vec i & \\vec j & \\vec k \\\\\n -2 & 1& -1 \\\\\n -13 & -14 & 11 \\\\\n\\end{vmatrix}"
"=\\vec i\\begin{vmatrix}\n 1 & -1 \\\\\n -14 & 11\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n -2 & -1 \\\\\n -13 & 11\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n -2 & 1 \\\\\n -13 & -14\n\\end{vmatrix}"
"=-3\\vec i+35\\vec j+41\\vec k"
"\\vec u\\times (\\vec w\\times \\vec v)=\\langle -3, 35, 41 \\rangle"
"=\\vec i\\begin{vmatrix}\n 9 & -7 \\\\\n 2 & -1\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n 8 & -7 \\\\\n -3 & -1\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n 8 & 9 \\\\\n -3 & 2\n\\end{vmatrix}"
"=5\\vec i+29\\vec j+43\\vec k"
"(\\vec u\\times \\vec w)\\times \\vec v=\\langle 5, 29, 43 \\rangle"
Comments
Leave a comment