a.) Consider the point A=(-1,0,1), B=(0, - 2,3) and C = (-4,4,1) to be vertices of a triangle "\\Delta" . Evaluate all side lengths of
"\\Delta"
b.) let "\\Delta" be the triangle with vertices the points P=(3, 1,-1), Q=(2, 0,3) and R=(1, 1,1). Determine whether "\\Delta" is a right triangle. If it is not, explain with reason, why?
c.) let u=<0,1,1>, v=<2,2,0> and w=<-1,1,0> be three vectors in standard form. (i) Determine which two vectors form a right angle triangle? (ii) find "\\theta" =uw, the angel between the given two vectors.
d.) let x<0.find the vector n=<x, Y, z> that is orthogonal to all three vectors u=<1,1,-2>,v=<-1,2,0> and w=<-1,0,1>.
e.)find a unit vector that is orthogonal to both u =<0,-1,-1> and v=<1,0,-1>
a)
b)
"\\overrightarrow{QR}=\\langle1-2,1-0,1-3 \\rangle=\\langle-1,1,-2 \\rangle"
"\\overrightarrow{PQ}\\cdot \\overrightarrow{PR}=-1(-2)-1(0)+4(2)=10\\not=0"
"\\overrightarrow{PQ}\\cdot \\overrightarrow{QR}=-1(-1)-1(1)+4(-2)=-8\\not=0"
"\\overrightarrow{QR}\\cdot \\overrightarrow{PR}=-1(-2)+1(0)-2(2)=-2\\not=0"
There is no a pair of orthogonal vectors, hence "\\vartriangle" is not right.
c)
"\\vec u\\cdot\\vec w=\\langle 0,1,1 \\rangle\\langle -1,1,0 \\rangle=0+1+0=1\\not=0"
"\\vec w\\cdot\\vec v=\\langle -1,1,0 \\rangle\\langle 2,2,0 \\rangle=-2+2+0=0"
"\\vec w \\perp \\vec v"
Vectors "\\vec w" and "\\vec v" form a right angle triangle.
"||\\vec u||=\\sqrt{(0)^2+(1)^2+(1)^2}=\\sqrt{2}"
"||\\vec w||=\\sqrt{(-1)^2+(1)^2+(0)^2}=\\sqrt{2}"
"\\cos \\theta=\\dfrac{\\vec u\\cdot\\vec w}{||\\vec u||\\cdot||\\vec w||}=\\dfrac{1}{\\sqrt{2}\\sqrt{2}}=\\dfrac{1}{2}"
"\\theta=60\\degree"
d)
"\\vec v\\cdot\\vec n=\\langle -1,2,0 \\rangle\\langle x,y,z\\rangle=-x+2y=0"
"\\vec w\\cdot\\vec n=\\langle -1,0,1 \\rangle\\langle x,y,z\\rangle=-x+z=0"
"z=x=2y"
"2y+y-2y=0"
"x=0, y=0, z=0"
Since "x<0," then such vector "\\vec n" does not exist.
e)
"=\\vec i\\begin{vmatrix}\n -1 & -1 \\\\\n 0 & -1\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n 0 & -1 \\\\\n 1 & -1\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n 0 & -1 \\\\\n 1 & 0\n\\end{vmatrix}"
"=\\vec i-\\vec j+\\vec k"
"\\sqrt{(1)^2+(-1)^2+(1)^2}=\\sqrt{3}"
Comments
Leave a comment