Answer to Question #209788 in Analytic Geometry for Tshego

Question #209788

Determine projau the orthogonal projection of u and a and deduce ||projau|| for

a.) u=<-1 3>, a=<-1,-3>;

b.)u=<-2,1,-3>, a=<-2,1,2>.


1
Expert's answer
2021-06-24T16:06:32-0400
projau=uaa2aproj_{\vec a}\vec u=\dfrac{\vec u\cdot\vec a}{|\vec a|^2}\vec a

(2.1)


u=1,3,a=1,3\vec u=\langle-1,3\rangle, \vec a=\langle-1,-3\rangle

ua=1(1)+3(3)=8\vec u\cdot\vec a=-1(-1)+3(-3)=-8

a2=(1)2+(3)2=10|\vec a|^2=(-1)^2+(-3)^2=10

projau=uaa2a=8101,3proj_{\vec a}\vec u=\dfrac{\vec u\cdot\vec a}{|\vec a|^2}\vec a=\dfrac{-8}{10}\langle-1,-3\rangle

=0.8,0.3=\langle0.8,-0.3\rangleprojau=(0.8)2+(0.3)2=0.73|proj_{\vec a}\vec u|=\sqrt{(0.8)^2+(-0.3)^2}=\sqrt{0.73}


(2.2)


u=2,1,3,a=2,1,2\vec u=\langle-2,1, -3\rangle, \vec a=\langle-2,1, 2\rangle

ua=2(2)+1(1)3(2)=1\vec u\cdot\vec a=-2(-2)+1(1)-3(2)=-1

a2=(2)2+(1)2+(2)2=9|\vec a|^2=(-2)^2+(1)^2+(2)^2=9

projau=uaa2a=192,1,2proj_{\vec a}\vec u=\dfrac{\vec u\cdot\vec a}{|\vec a|^2}\vec a=\dfrac{-1}{9}\langle-2,1,2\rangle

=29,19,29=\langle\dfrac{2}{9},-\dfrac{1}{9},-\dfrac{2}{9}\rangleprojau=(29)2+(19)2+(29)2=13|proj_{\vec a}\vec u|=\sqrt{(\dfrac{2}{9})^2+(-\dfrac{1}{9})^2+(-\dfrac{2}{9})^2}=\dfrac{1}{3}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment