Determine projau the orthogonal projection of u and a and deduce ||projau|| for
a.) u=<-1 3>, a=<-1,-3>;
b.)u=<-2,1,-3>, a=<-2,1,2>.
(2.1)
"\\vec u\\cdot\\vec a=-1(-1)+3(-3)=-8"
"|\\vec a|^2=(-1)^2+(-3)^2=10"
"proj_{\\vec a}\\vec u=\\dfrac{\\vec u\\cdot\\vec a}{|\\vec a|^2}\\vec a=\\dfrac{-8}{10}\\langle-1,-3\\rangle"
"=\\langle0.8,-0.3\\rangle""|proj_{\\vec a}\\vec u|=\\sqrt{(0.8)^2+(-0.3)^2}=\\sqrt{0.73}"
(2.2)
"\\vec u\\cdot\\vec a=-2(-2)+1(1)-3(2)=-1"
"|\\vec a|^2=(-2)^2+(1)^2+(2)^2=9"
"proj_{\\vec a}\\vec u=\\dfrac{\\vec u\\cdot\\vec a}{|\\vec a|^2}\\vec a=\\dfrac{-1}{9}\\langle-2,1,2\\rangle"
"=\\langle\\dfrac{2}{9},-\\dfrac{1}{9},-\\dfrac{2}{9}\\rangle""|proj_{\\vec a}\\vec u|=\\sqrt{(\\dfrac{2}{9})^2+(-\\dfrac{1}{9})^2+(-\\dfrac{2}{9})^2}=\\dfrac{1}{3}"
Comments
Leave a comment