(2.1) u = ⟨ − 1 , 3 ⟩ , a = ⟨ − 1 , − 3 ⟩ \mathbf{u} =\langle -1 ,\ 3\rangle ,\quad \mathbf{a} =\langle-1,\ -3\rangle u = ⟨ − 1 , 3 ⟩ , a = ⟨ − 1 , − 3 ⟩
proj a u = ( u ⋅ a ∥ a ∥ 2 ) a \text{proj}_ \mathbf{a} \mathbf{u} =\big(\frac{ \mathbf{u}\ \cdot \ \mathbf{a}}{\| \mathbf{a}\|^2} \big)\ \mathbf{a} proj a u = ( ∥ a ∥ 2 u ⋅ a ) a and ∥ proj a u ∥ = ∣ u ⋅ a ∣ ∥ a ∥ \| \text{proj}_ \mathbf{a} \mathbf{u}\|=\frac{|\mathbf{u}\ \cdot \ \mathbf{a}|}{\| \mathbf{a}\|} ∥ proj a u ∥ = ∥ a ∥ ∣ u ⋅ a ∣
u ⋅ a = 1 − 9 = − 8 \mathbf{u}\ \cdot \ \mathbf{a}=1-9=-8 u ⋅ a = 1 − 9 = − 8
∥ a ∥ 2 = 1 + 9 = 10 \| \mathbf{a}\|^2=1+9=10 ∥ a ∥ 2 = 1 + 9 = 10
proj a u = − 8 10 a = ⟨ 0.8 , 2.4 ⟩ \text{proj}_ \mathbf{a} \mathbf{u} =-\frac{8}{10} \mathbf{a}=\langle0.8,\ 2.4\rangle proj a u = − 10 8 a = ⟨ 0.8 , 2.4 ⟩ and ∥ proj a u ∥ = 8 10 = 6.4 \|\text{proj}_ \mathbf{a} \mathbf{u}\|=\frac{8}{\sqrt{10}}=\sqrt{6.4} ∥ proj a u ∥ = 10 8 = 6.4
(2.2) u = ⟨ − 2 , 1 , − 3 ⟩ , a = ⟨ − 2 , 1 , 2 ⟩ \mathbf{u} =\langle -2,1 ,\ - 3\rangle ,\quad \mathbf{a} =\langle-2,1,\ 2\rangle u = ⟨ − 2 , 1 , − 3 ⟩ , a = ⟨ − 2 , 1 , 2 ⟩
proj a u = ( u ⋅ a ∥ a ∥ 2 ) a \text{proj}_ \mathbf{a} \mathbf{u} =\big(\frac{ \mathbf{u}\ \cdot \ \mathbf{a}}{\| \mathbf{a}\|^2} \big)\ \mathbf{a} proj a u = ( ∥ a ∥ 2 u ⋅ a ) a and ∥ proj a u ∥ = ∣ u ⋅ a ∣ ∥ a ∥ \| \text{proj}_ \mathbf{a} \mathbf{u}\|=\frac{ |\mathbf{u}\ \cdot \ \mathbf{a}|}{\| \mathbf{a}\|} ∥ proj a u ∥ = ∥ a ∥ ∣ u ⋅ a ∣
u ⋅ a = 4 + 1 − 6 = − 1 \mathbf{u}\ \cdot \ \mathbf{a}=4+1-6=-1 u ⋅ a = 4 + 1 − 6 = − 1
∥ a ∥ 2 = 4 + 1 + 4 = 9 \| \mathbf{a}\|^2=4+1+4=9 ∥ a ∥ 2 = 4 + 1 + 4 = 9
proj a u = − 1 9 a = ⟨ 2 9 , − 1 9 , − 2 9 ⟩ \text{proj}_ \mathbf{a} \mathbf{u} =-\frac{1}{9} \mathbf{a}=\langle
\frac{2}{9},\ -\frac{1}{9},\ -\frac{2}{9}
\rangle proj a u = − 9 1 a = ⟨ 9 2 , − 9 1 , − 9 2 ⟩ and ∥ proj a u ∥ = 1 9 = 1 3 \|\text{proj}_ \mathbf{a} \mathbf{u}\|=\frac{1}{\sqrt{9}}=\frac{1}{3} ∥ proj a u ∥ = 9 1 = 3 1
Answer:
(2.1) proj a u = ⟨ 0.8 , 2.4 ⟩ \text{proj}_ \mathbf{a} \mathbf{u}=\langle0.8,\ 2.4\rangle proj a u = ⟨ 0.8 , 2.4 ⟩ and ∥ proj a u ∥ = 6.4 \|\text{proj}_ \mathbf{a} \mathbf{u}\|=\sqrt{6.4} ∥ proj a u ∥ = 6.4
(2.2) proj a u = ⟨ 2 9 , − 1 9 , − 2 9 ⟩ \text{proj}_ \mathbf{a} \mathbf{u} =\langle
\frac{2}{9},\ -\frac{1}{9},\ -\frac{2}{9}
\rangle proj a u = ⟨ 9 2 , − 9 1 , − 9 2 ⟩ and ∥ proj a u ∥ = 1 3 \|\text{proj}_ \mathbf{a} \mathbf{u}\|=\frac{1}{3} ∥ proj a u ∥ = 3 1
Comments