Find an expression for 12
jj~u + ~vjj2 + 12
jj~u ô€€€ ~vjj2 in terms of jj~ujj2 + jj~vjj2.
(3.2) Find an expression for jj~u + ~vjj2 ô€€€ jj~u ô€€€ ~vjj2 in terms of ~u ~v (3)
(3.3) Use the result of (3.2) to deduce an expression for jj~u + ~vjj2 whenever ~u and ~v are orthogonal (1)
to each other.
(3.1)
"=(\\vec u, \\vec u)+2(\\vec u, \\vec v)+(\\vec v, \\vec v)"
"=||\\vec u||^2+2(\\vec u, \\vec v)+||\\vec v||^2"
"=(\\vec u, \\vec u)-2(\\vec u, \\vec v)+(\\vec v, \\vec v)"
"=||\\vec u||^2-2(\\vec u, \\vec v)+||\\vec v||^2"
"=\\dfrac{1}{2}(||\\vec u||^2+2(\\vec u, \\vec v)+||\\vec v||^2)+\\dfrac{1}{2}(||\\vec u||^2-2(\\vec u, \\vec v)+||\\vec v||^2)"
"=||\\vec u||^2+||\\vec v||^2"
(3.2)
"=||\\vec u||^2+2(\\vec u, \\vec v)+||\\vec v||^2-(||\\vec u||^2-2(\\vec u, \\vec v)+||\\vec v||^2)"
"=4(\\vec u, \\vec v)"
(3.3)
If "\\vec u \\perp \\vec v," then "(\\vec u, \\vec v)=0"
Comments
Leave a comment