Consider the vectors ~u =< −2, 2, −3 >, ~v =< −1, 3, −4 >, w~ =< 2, −6, 2 > and the points A(2, 6, −1) and B(−3, −5, 7). Evaluate
(5.1) The distance between the two points.
(5.2) ||2~u − 3~v + (1) 1 2w~ ||.
(5.3) The unit vector in the direction of w~ .
(5.4) Suppose ~u; ~v and w~ are vectors in 3D, where ~u = (u1, u2, u3) ; ~v = (v1, v2, v3) and w~ =(w1, w2, w3).
Express (~u × ~v) · w~ as a determinant.
(5.1)
"=\\sqrt{210} \\ (units)"
(5.2)
"=\\langle-4,4-6\\rangle+\\langle3,-9,12\\rangle+\\langle3,-9,3\\rangle"
"=\\langle2,-14,9\\rangle"
"\\|\\vec 2u-3\\vec v+1{1 \\over 2}\\vec w\\|"
"=\\sqrt{(2)^2+(-14)^2+(9)^2}=\\sqrt{281}"
(5.3)
"\\dfrac{\\vec w}{\\|\\vec w\\|}=\\dfrac{1}{2\\sqrt{11}}\\langle3,-9,3\\rangle"
"=\\langle\\dfrac{3\\sqrt{11}}{22},-\\dfrac{9\\sqrt{11}}{22},\\dfrac{3\\sqrt{11}}{22}\\rangle"
(5.4)
"=u_1\\begin{vmatrix}\n v_2 & v_3 \\\\\n w_1 & w_3\n\\end{vmatrix}-u_2\\begin{vmatrix}\n v_1 & v_3 \\\\\n w_1 & w_3\n\\end{vmatrix}+u_3\\begin{vmatrix}\n v_1 & v_2 \\\\\n w_1 & w_2\n\\end{vmatrix}"
Comments
Leave a comment