Question #200627

Let P = (1, 2, 3) and Q = (−5, −1, 12).

(4.1) Find the midpoint of the line segment connecting P and Q.

(4.2) Find the point on the line segment connecting P and Q that is 2/3 of the way from P to Q.

(4.3) Let P = (−1, 5, 2). If the point (0, −2, 3) is the midpoint of the line segment connecting P and Q, what is the point Q?


1
Expert's answer
2021-06-07T11:58:28-0400

P(1,2,3),Q(5,1,12)P(1,2,3), Q(-5,-1,12)

4.1

xA=xP+xQ2=152=2yA=yP+yQ2=212=0.5zA=zP+zQ2=3+122=7.5x_A =\frac{x_P +x_Q}{2}=\frac{1-5}{2}=-2\\ y_A =\frac{y_P +y_Q}{2}=\frac{2-1}{2}=0.5\\ z_A =\frac{z_P +z_Q}{2}=\frac{3+12}{2}=7.5\\

A(-2, 0.5, 7.5) the midpoint of the line segment connecting P and Q.

4.2

xB=xP+λxQ1+λ=1+23(5)1+23=75yB=yP+λyQ1+λ=2+23(1)1+23=45zB=zP+λzQ1+λ=3+23121+23=335x_B=\frac{x_P+\lambda x_Q}{1+\lambda}=\frac{1+\frac{2}{3}\cdot(-5)}{1+\frac{2}{3}}=-\frac{7}{5}\\ y_B=\frac{y_P+\lambda y_Q}{1+\lambda}=\frac{2+\frac{2}{3}\cdot(-1)}{1+\frac{2}{3}}=\frac{4}{5}\\ z_B=\frac{z_P+\lambda z_Q}{1+\lambda}=\frac{3+\frac{2}{3}\cdot12}{1+\frac{2}{3}}=\frac{33}{5}\\

B(75,45,335\frac{7}{5},\frac{4}{5},\frac{33}{5} ) the point on the line segment connecting P and Q that is 23\frac{2}{3} of the way from P to Q.

4.3

P(1,5,2),O(0,2,3)P(-1,5,2) , O(0,-2,3)

O is the midpoint of the line segment connecting P and Q

Q(x,y,z)xO=xP+xQ20=1+x2x=1yO=yP+yQ22=5+y2y=9zO=zP+zQ23=2+z2z=4Q(x,y,z)\\ x_O=\frac{x_P+x_Q}{2}\\ 0=\frac{-1+x}{2}\\ x=1\\ y_O=\frac{y_P+y_Q}{2}\\ -2=\frac{5+y}{2}\\ y=-9\\ z_O=\frac{z_P+z_Q}{2}\\ 3=\frac{2+z}{2}\\ z=4

Q(1,-9,4)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS