Let P = (1, 2, 3) and Q = (−5, −1, 12).
(4.1) Find the midpoint of the line segment connecting P and Q.
(4.2) Find the point on the line segment connecting P and Q that is 2/3 of the way from P to Q.
(4.3) Let P = (−1, 5, 2). If the point (0, −2, 3) is the midpoint of the line segment connecting P and Q, what is the point Q?
"P(1,2,3), Q(-5,-1,12)"
4.1
"x_A =\\frac{x_P +x_Q}{2}=\\frac{1-5}{2}=-2\\\\\ny_A =\\frac{y_P +y_Q}{2}=\\frac{2-1}{2}=0.5\\\\\nz_A =\\frac{z_P +z_Q}{2}=\\frac{3+12}{2}=7.5\\\\"
A(-2, 0.5, 7.5) the midpoint of the line segment connecting P and Q.
4.2
"x_B=\\frac{x_P+\\lambda x_Q}{1+\\lambda}=\\frac{1+\\frac{2}{3}\\cdot(-5)}{1+\\frac{2}{3}}=-\\frac{7}{5}\\\\\ny_B=\\frac{y_P+\\lambda y_Q}{1+\\lambda}=\\frac{2+\\frac{2}{3}\\cdot(-1)}{1+\\frac{2}{3}}=\\frac{4}{5}\\\\\nz_B=\\frac{z_P+\\lambda z_Q}{1+\\lambda}=\\frac{3+\\frac{2}{3}\\cdot12}{1+\\frac{2}{3}}=\\frac{33}{5}\\\\"
B("\\frac{7}{5},\\frac{4}{5},\\frac{33}{5}" ) the point on the line segment connecting P and Q that is "\\frac{2}{3}" of the way from P to Q.
4.3
"P(-1,5,2) , O(0,-2,3)"
O is the midpoint of the line segment connecting P and Q
"Q(x,y,z)\\\\\nx_O=\\frac{x_P+x_Q}{2}\\\\\n0=\\frac{-1+x}{2}\\\\\nx=1\\\\\ny_O=\\frac{y_P+y_Q}{2}\\\\\n-2=\\frac{5+y}{2}\\\\\ny=-9\\\\\nz_O=\\frac{z_P+z_Q}{2}\\\\\n3=\\frac{2+z}{2}\\\\\nz=4"
Q(1,-9,4)
Comments
Leave a comment