The normalized axes are
e 1 ′ = 1 10 ( 1 , − 3 , 0 ) , e 2 ′ = 1 10 ( 3 , 1 , 0 ) , e 3 ′ = ( 0 , 0 , 1 ) e'_1=\frac{1}{\sqrt{10}}(1,-3,0),e'_2=\frac{1}{\sqrt{10}}(3,1,0),e'_3=(0,0,1) e 1 ′ = 10 1 ( 1 , − 3 , 0 ) , e 2 ′ = 10 1 ( 3 , 1 , 0 ) , e 3 ′ = ( 0 , 0 , 1 )
or
( e 1 ′ e 2 ′ e 3 ′ ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) ( e 1 e 2 e 3 ) \begin{pmatrix}
e'_1 \\
e'_2\\
e'_3
\end{pmatrix}=\begin{pmatrix}
\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}}&0 \\
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}&0\\
0&0&1
\end{pmatrix}\begin{pmatrix}
e_1 \\
e_2\\
e_3
\end{pmatrix} ⎝ ⎛ e 1 ′ e 2 ′ e 3 ′ ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 10 − 3 10 1 0 0 0 1 ⎠ ⎞ ⎝ ⎛ e 1 e 2 e 3 ⎠ ⎞
- the basis in the rotated frame. The transformation of coordinates is given by
( x ′ y ′ z ′ ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) − 1 ( x y z ) \begin{pmatrix}
x' \\
y'\\
z'
\end{pmatrix}=\begin{pmatrix}
\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}}&0 \\
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}&0\\
0&0&1
\end{pmatrix}^{-1}\begin{pmatrix}
x \\
y\\
z
\end{pmatrix} ⎝ ⎛ x ′ y ′ z ′ ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 10 − 3 10 1 0 0 0 1 ⎠ ⎞ − 1 ⎝ ⎛ x y z ⎠ ⎞
So:
( x y z ) = ( 1 10 − 3 10 0 3 10 1 10 0 0 0 1 ) ( x ′ y ′ z ′ ) \begin{pmatrix}
x\\
y\\
z
\end{pmatrix}=\begin{pmatrix}
\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}}&0 \\
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}&0\\
0&0&1
\end{pmatrix}\begin{pmatrix}
x' \\
y'\\
z'
\end{pmatrix} ⎝ ⎛ x y z ⎠ ⎞ = ⎝ ⎛ 10 1 10 3 0 10 − 3 10 1 0 0 0 1 ⎠ ⎞ ⎝ ⎛ x ′ y ′ z ′ ⎠ ⎞
x = { x = x ′ 10 − 3 y ′ 10 y = 3 x ′ 10 + y ′ 10 z = z ′ x = \begin{cases}
x=\frac{x'}{\sqrt{10}}-\frac{3y'}{\sqrt{10}} \\
y=\frac{3x'}{\sqrt{10}}+\frac{y'}{\sqrt{10}}\\
z=z'
\end{cases} x = ⎩ ⎨ ⎧ x = 10 x ′ − 10 3 y ′ y = 10 3 x ′ + 10 y ′ z = z ′
12 x 2 − 2 y 2 + z 2 = 2 x y 12x^2-2y^2+z^2=2xy 12 x 2 − 2 y 2 + z 2 = 2 x y
12 ( x ′ − 3 y ′ ) 2 10 − 2 ( 3 x ′ − y ′ ) 2 10 + z ′ 2 = 2 ( x ′ − 3 y ′ ) ( 3 x ′ − y ′ ) 10 \frac{12(x'-3y')^2}{10}-\frac{2(3x'-y')^2}{10}+z'^2=\frac{2(x'-3y')(3x'-y')}{10} 10 12 ( x ′ − 3 y ′ ) 2 − 10 2 ( 3 x ′ − y ′ ) 2 + z ′2 = 10 2 ( x ′ − 3 y ′ ) ( 3 x ′ − y ′ )
12 ( x ′ 2 − 6 x ′ y ′ + 9 ′ 2 ) − 2 ( 9 x ′ 2 + 6 x ′ y ′ + y ′ 2 ) + 10 z ′ 2 = 2 ( 3 x ′ 2 − 8 x ′ y ′ − 3 y ′ 2 ) 12(x'^2-6x'y'+9'^2)-2(9x'^2+6x'y'+y'^2)+10z'^2=2(3x'^2-8x'y'-3y'^2) 12 ( x ′2 − 6 x ′ y ′ + 9 ′2 ) − 2 ( 9 x ′2 + 6 x ′ y ′ + y ′2 ) + 10 z ′2 = 2 ( 3 x ′2 − 8 x ′ y ′ − 3 y ′2 )
− 12 x ′ 2 − 68 x ′ y ′ + 112 y ′ 2 + 10 z ′ 2 = 0 -12x'^2-68x'y'+112y'^2+10z'^2=0 − 12 x ′2 − 68 x ′ y ′ + 112 y ′2 + 10 z ′2 = 0
Answer:
5 z ′ 2 + 56 y ′ 2 − 6 x ′ 2 = 34 x ′ y ′ 5z'^2+56y'^2-6x'^2=34x'y' 5 z ′2 + 56 y ′2 − 6 x ′2 = 34 x ′ y ′
Comments