Question #200493

Find the transformation of the equation 12x2 −2y2 +z2 = 2xy if the origin is kept fixed and the axes are rotated in such a way that the direction ratios of the new axes are 1,−3,0; 3,1,0; 0,0,1.


1
Expert's answer
2021-06-03T03:54:36-0400

The normalized axes are

e1=110(1,3,0),e2=110(3,1,0),e3=(0,0,1)e'_1=\frac{1}{\sqrt{10}}(1,-3,0),e'_2=\frac{1}{\sqrt{10}}(3,1,0),e'_3=(0,0,1)

or

(e1e2e3)=(11031003101100001)(e1e2e3)\begin{pmatrix} e'_1 \\ e'_2\\ e'_3 \end{pmatrix}=\begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}}&0 \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}&0\\ 0&0&1 \end{pmatrix}\begin{pmatrix} e_1 \\ e_2\\ e_3 \end{pmatrix}

- the basis in the rotated frame. The transformation of coordinates is given by

(xyz)=(11031003101100001)1(xyz)\begin{pmatrix} x' \\ y'\\ z' \end{pmatrix}=\begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}}&0 \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}&0\\ 0&0&1 \end{pmatrix}^{-1}\begin{pmatrix} x \\ y\\ z \end{pmatrix}

So:

(xyz)=(11031003101100001)(xyz)\begin{pmatrix} x\\ y\\ z \end{pmatrix}=\begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}}&0 \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}&0\\ 0&0&1 \end{pmatrix}\begin{pmatrix} x' \\ y'\\ z' \end{pmatrix}

x={x=x103y10y=3x10+y10z=zx = \begin{cases} x=\frac{x'}{\sqrt{10}}-\frac{3y'}{\sqrt{10}} \\ y=\frac{3x'}{\sqrt{10}}+\frac{y'}{\sqrt{10}}\\ z=z' \end{cases}

12x22y2+z2=2xy12x^2-2y^2+z^2=2xy


12(x3y)2102(3xy)210+z2=2(x3y)(3xy)10\frac{12(x'-3y')^2}{10}-\frac{2(3x'-y')^2}{10}+z'^2=\frac{2(x'-3y')(3x'-y')}{10}


12(x26xy+92)2(9x2+6xy+y2)+10z2=2(3x28xy3y2)12(x'^2-6x'y'+9'^2)-2(9x'^2+6x'y'+y'^2)+10z'^2=2(3x'^2-8x'y'-3y'^2)


12x268xy+112y2+10z2=0-12x'^2-68x'y'+112y'^2+10z'^2=0


Answer:


5z2+56y26x2=34xy5z'^2+56y'^2-6x'^2=34x'y'


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS