Find the transformation of the equation 12x2 −2y2 +z2 = 2xy if the origin is kept fixed and the axes are rotated in such a way that the direction ratios of the new axes are 1,−3,0; 3,1,0; 0,0,1.
The normalized axes are
"e'_1=\\frac{1}{\\sqrt{10}}(1,-3,0),e'_2=\\frac{1}{\\sqrt{10}}(3,1,0),e'_3=(0,0,1)"
or
"\\begin{pmatrix}\n e'_1 \\\\\n e'_2\\\\\ne'_3\n\\end{pmatrix}=\\begin{pmatrix}\n \\frac{1}{\\sqrt{10}} & \\frac{-3}{\\sqrt{10}}&0 \\\\\n \\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}}&0\\\\\n0&0&1\n\\end{pmatrix}\\begin{pmatrix}\n e_1 \\\\\n e_2\\\\\ne_3\n\\end{pmatrix}"
- the basis in the rotated frame. The transformation of coordinates is given by
"\\begin{pmatrix}\n x' \\\\\n y'\\\\\nz'\n\\end{pmatrix}=\\begin{pmatrix}\n \\frac{1}{\\sqrt{10}} & \\frac{-3}{\\sqrt{10}}&0 \\\\\n \\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}}&0\\\\\n0&0&1\n\\end{pmatrix}^{-1}\\begin{pmatrix}\n x \\\\\n y\\\\\nz\n\\end{pmatrix}"
So:
"\\begin{pmatrix}\n x\\\\\n y\\\\\nz\n\\end{pmatrix}=\\begin{pmatrix}\n \\frac{1}{\\sqrt{10}} & \\frac{-3}{\\sqrt{10}}&0 \\\\\n \\frac{3}{\\sqrt{10}} & \\frac{1}{\\sqrt{10}}&0\\\\\n0&0&1\n\\end{pmatrix}\\begin{pmatrix}\n x' \\\\\n y'\\\\\nz'\n\\end{pmatrix}"
"x = \\begin{cases}\n x=\\frac{x'}{\\sqrt{10}}-\\frac{3y'}{\\sqrt{10}} \\\\\n y=\\frac{3x'}{\\sqrt{10}}+\\frac{y'}{\\sqrt{10}}\\\\\nz=z'\n\\end{cases}"
"12x^2-2y^2+z^2=2xy"
"\\frac{12(x'-3y')^2}{10}-\\frac{2(3x'-y')^2}{10}+z'^2=\\frac{2(x'-3y')(3x'-y')}{10}"
"12(x'^2-6x'y'+9'^2)-2(9x'^2+6x'y'+y'^2)+10z'^2=2(3x'^2-8x'y'-3y'^2)"
"-12x'^2-68x'y'+112y'^2+10z'^2=0"
Answer:
"5z'^2+56y'^2-6x'^2=34x'y'"
Comments
Leave a comment