Question #200471

a) Find the equation of the normal to the parabola y 2 +4x = 0 at the point where the line y = x+c touches it.


1
Expert's answer
2021-06-16T15:06:47-0400

Answer:-

Point of intersection of line on parabola,

(x+c)2+4x=0(x+c)^2+4x=0

x2+c2+2xc+4x=0x^2+c^2+2xc+4x=0

x2+2x(c+2)+c2=0x^2+2x(c+2)+c^2=0

x=(c+2)±2(2+c)x=-(c+2)\pm\sqrt{2(2+c)}

y=2+2(2+c)y=-2+\sqrt{2(2+c)}


Slope of Tangent to parabola

2ydydx+4=02y\dfrac{dy}{dx}+4=0

mT=dydx=2y=22+2(2+c)m_T=\dfrac{dy}{dx}=\dfrac{-2}{y}=\dfrac{-2}{-2+\sqrt{2(2+c)}}


Now,

Slope of normal = mNm_N

mT×mN=1m_T\times m_N=-1

mN=2+2(2+c)2m_N=\dfrac{-2+\sqrt{2(2+c)}}{2}

Equation of normal,

y+22(2+c)=2+2(2+c)2(x+(c+2)2(2+c))y+2-\sqrt{2(2+c)}=\dfrac{-2+\sqrt{2(2+c)}}{2}(x+(c+2)-\sqrt{2(2+c)})

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS