Answer:-
Point of intersection of line on parabola,
(x+c)2+4x=0
x2+c2+2xc+4x=0
x2+2x(c+2)+c2=0
x=−(c+2)±2(2+c)
y=−2+2(2+c)
Slope of Tangent to parabola
2ydxdy+4=0
mT=dxdy=y−2=−2+2(2+c)−2
Now,
Slope of normal = mN
mT×mN=−1
mN=2−2+2(2+c)
Equation of normal,
y+2−2(2+c)=2−2+2(2+c)(x+(c+2)−2(2+c))
Comments