a) Find the equation of the normal to the parabola y 2 +4x = 0 at the point where the line y = x+c touches it.
Answer:-
Point of intersection of line on parabola,
(x+c)2+4x=0(x+c)^2+4x=0(x+c)2+4x=0
x2+c2+2xc+4x=0x^2+c^2+2xc+4x=0x2+c2+2xc+4x=0
x2+2x(c+2)+c2=0x^2+2x(c+2)+c^2=0x2+2x(c+2)+c2=0
x=−(c+2)±2(2+c)x=-(c+2)\pm\sqrt{2(2+c)}x=−(c+2)±2(2+c)
y=−2+2(2+c)y=-2+\sqrt{2(2+c)}y=−2+2(2+c)
Slope of Tangent to parabola
2ydydx+4=02y\dfrac{dy}{dx}+4=02ydxdy+4=0
mT=dydx=−2y=−2−2+2(2+c)m_T=\dfrac{dy}{dx}=\dfrac{-2}{y}=\dfrac{-2}{-2+\sqrt{2(2+c)}}mT=dxdy=y−2=−2+2(2+c)−2
Now,
Slope of normal = mNm_NmN
mT×mN=−1m_T\times m_N=-1mT×mN=−1
mN=−2+2(2+c)2m_N=\dfrac{-2+\sqrt{2(2+c)}}{2}mN=2−2+2(2+c)
Equation of normal,
y+2−2(2+c)=−2+2(2+c)2(x+(c+2)−2(2+c))y+2-\sqrt{2(2+c)}=\dfrac{-2+\sqrt{2(2+c)}}{2}(x+(c+2)-\sqrt{2(2+c)})y+2−2(2+c)=2−2+2(2+c)(x+(c+2)−2(2+c))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments