Answer:-
Point of intersection of line on parabola,
( x + c ) 2 + 4 x = 0 (x+c)^2+4x=0 ( x + c ) 2 + 4 x = 0
x 2 + c 2 + 2 x c + 4 x = 0 x^2+c^2+2xc+4x=0 x 2 + c 2 + 2 x c + 4 x = 0
x 2 + 2 x ( c + 2 ) + c 2 = 0 x^2+2x(c+2)+c^2=0 x 2 + 2 x ( c + 2 ) + c 2 = 0
x = − ( c + 2 ) ± 2 ( 2 + c ) x=-(c+2)\pm\sqrt{2(2+c)} x = − ( c + 2 ) ± 2 ( 2 + c )
y = − 2 + 2 ( 2 + c ) y=-2+\sqrt{2(2+c)} y = − 2 + 2 ( 2 + c )
Slope of Tangent to parabola
2 y d y d x + 4 = 0 2y\dfrac{dy}{dx}+4=0 2 y d x d y + 4 = 0
m T = d y d x = − 2 y = − 2 − 2 + 2 ( 2 + c ) m_T=\dfrac{dy}{dx}=\dfrac{-2}{y}=\dfrac{-2}{-2+\sqrt{2(2+c)}} m T = d x d y = y − 2 = − 2 + 2 ( 2 + c ) − 2
Now,
Slope of normal = m N m_N m N
m T × m N = − 1 m_T\times m_N=-1 m T × m N = − 1
m N = − 2 + 2 ( 2 + c ) 2 m_N=\dfrac{-2+\sqrt{2(2+c)}}{2} m N = 2 − 2 + 2 ( 2 + c )
Equation of normal,
y + 2 − 2 ( 2 + c ) = − 2 + 2 ( 2 + c ) 2 ( x + ( c + 2 ) − 2 ( 2 + c ) ) y+2-\sqrt{2(2+c)}=\dfrac{-2+\sqrt{2(2+c)}}{2}(x+(c+2)-\sqrt{2(2+c)}) y + 2 − 2 ( 2 + c ) = 2 − 2 + 2 ( 2 + c ) ( x + ( c + 2 ) − 2 ( 2 + c ) )
Comments