Use the fact that
x y 1
a1 b1 1 =0
a2 b2 1
to determine the equation of the line passing through the distinct points (a1, b1) and (a2, b2), where |·| stands for det(·), the determinant.
We have,
"\\begin{vmatrix}\n x & x&1 \\\\\n a_1 & b_1&1\\\\\n a_2&b_2&1\n\\end{vmatrix}=0\\\\\\ \\\\\\Rightarrow x(b_1-b_2)-y(a_1-a_2)+b_2a_1-a_2b_1=0\\\\\\Rightarrow x(b_2-b_1)-y(a_2-a_1)+a_2b_1-b_2a_1=0\\\\\\Rightarrow x(b_2-b_1)+a_2b_1=y(a_2-a_1)+b_2a_1\\\\\\text{Add }a_2b_2\\ on\\ both\\ sides,\\ we\\ get\\\\\\Rightarrow x(b_2-b_1)-a_2b_2+a_2b_1=y(a_2-a_1)-b_2(a_2-a_1)\\\\\\Rightarrow (b_2-b_1)(x-a_2)=(a_2-a_1)(y-b_2)\\\\ \\ \\\\ \\Rightarrow\\dfrac{y-b_2}{b_2-b_1}=\\dfrac{x-a_2}{a_2-a_1}"
So, from the above equation, we can conclude that
the equation of the line will pass through the points "(a_1,b_1)\\ \\ and\\ (a_2,b_2)"
Comments
Leave a comment