Given,
Focus of the conic is lies at ( 2 , 1 ) (2,1) ( 2 , 1 )
The directrix of the conic lies at , x + y = 0 ,x+y=0 , x + y = 0
It passes through the point ( 1 , 4 ) (1,4) ( 1 , 4 )
Distance between the given points ( d ) = 1 + 9 = 10 (d)=\sqrt{1+9}=10 ( d ) = 1 + 9 = 10
The distance from the point ( 1 , 4 ) (1,4) ( 1 , 4 ) from directrix = 5 2 =\frac{5}{\sqrt{2}} = 2 5
The ratio of distance = 20 5 =\frac{\sqrt{20}}{5} = 5 20
From the above, we can conclude that the ratio is less than 1, so it is an ellipse.
Hence the required equation is ( x − 2 ) 2 + ( y − 1 ) 2 ( ( x + y ) 2 ) 2 = ( 2 5 ) 2 \frac{(x-2)^2+(y-1)^2}{(\frac{(x+y)}{\sqrt{2}})^2}=(\frac{2}{\sqrt{5}})^2 ( 2 ( x + y ) ) 2 ( x − 2 ) 2 + ( y − 1 ) 2 = ( 5 2 ) 2
⇒ x 2 + 4 − 4 x + y 2 + 1 − 2 y x 2 + y 2 + 2 x y 2 = 4 5 \Rightarrow \frac{x^2+4-4x+y^2+1-2y}{\frac{x^2+y^2+2xy}{2}}=\frac{4}{5} ⇒ 2 x 2 + y 2 + 2 x y x 2 + 4 − 4 x + y 2 + 1 − 2 y = 5 4
⇒ 5 x 2 + 20 − 20 x + 5 y 2 + 5 − 10 y = 2 x 2 + 2 y 2 + 4 x y \Rightarrow 5x^2+20-20x+5y^2+5-10y=2x^2+2y^2+4xy ⇒ 5 x 2 + 20 − 20 x + 5 y 2 + 5 − 10 y = 2 x 2 + 2 y 2 + 4 x y
⇒ 3 x 2 − 4 x y + 3 y 2 − 20 x − 10 y + 25 = 0 \Rightarrow 3x^2-4xy+3y^2-20x-10y+25=0 ⇒ 3 x 2 − 4 x y + 3 y 2 − 20 x − 10 y + 25 = 0
Comments