(a) Let us compose the parametric equations of the lines L1 and L2 :
L 1 : { x = 1 − t y = 3 t z = 2 + 4 t {L_1}:\left\{ {\begin{matrix}
{x = 1 - t}\\
{y = 3t}\\
{z = 2 + 4t}
\end{matrix}} \right. L 1 : ⎩ ⎨ ⎧ x = 1 − t y = 3 t z = 2 + 4 t , L 2 : { x = 1 − t y = − 1 + 3 t z = 3 + 4 t {L_2}:\left\{ {\begin{matrix}
{x = 1 - t}\\
{y = -1+3t}\\
{z = 3+ 4t}
\end{matrix}} \right. L 2 : ⎩ ⎨ ⎧ x = 1 − t y = − 1 + 3 t z = 3 + 4 t
The direction vector of these lines will be the vector p → = ( − 1 ; 3 ; 4 ) \overrightarrow p = \left( { - 1;3;4} \right) p = ( − 1 ; 3 ; 4 )
Since the lines are parallel to the plane V, the vector p → \overrightarrow p p is also parallel to the plane.
We also know that
M 1 ( 1 ; 0 ; 2 ) ∈ L 1 {M_1}\left( {1;0;2} \right) \in {L_1} M 1 ( 1 ; 0 ; 2 ) ∈ L 1 , M 2 ( 1 ; − 1 ; 3 ) ∈ L 2 {M_2}\left( {1; - 1;3} \right) \in {L_2} M 2 ( 1 ; − 1 ; 3 ) ∈ L 2
Since the lines are parallel to the plane V, the vector M 1 M 2 → = ( 1 − 1 ; − 1 − 0 ; 3 − 2 ) = ( 0 ; − 1 ; 1 ) \overrightarrow {{M_1}{M_2}} = \left( {1 - 1; - 1 - 0;3 - 2} \right) = \left( {0; - 1;1} \right) M 1 M 2 = ( 1 − 1 ; − 1 − 0 ; 3 − 2 ) = ( 0 ; − 1 ; 1 ) is also parallel to the plane.
Since the coordinates of the vectors p → \overrightarrow p p and M 1 M 2 → \overrightarrow {{M_1}{M_2}} M 1 M 2 are disproportionate, they are not collinear.
Answer: p → = ( − 1 ; 3 ; 4 ) \overrightarrow p = \left( { - 1;3;4} \right) p = ( − 1 ; 3 ; 4 ) , M 1 M 2 → = ( 0 ; − 1 ; 1 ) \overrightarrow {{M_1}{M_2}} =\left( {0; - 1;1} \right) M 1 M 2 = ( 0 ; − 1 ; 1 )
(b) The vector perpendicular to the plane is found as the vector product of vectors p → \overrightarrow p p and M 1 M 2 → \overrightarrow {{M_1}{M_2}} M 1 M 2 :
n → = ∣ i → j → k → − 1 3 4 0 − 1 1 ∣ = i → ( 3 + 4 ) + j → ( 0 + 1 ) + k → ( 1 − 0 ) = ( 7 ; 1 ; 1 ) \overrightarrow n = \left| {\begin{matrix}
{\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k }\\
{ - 1}&3&4\\
0&{ - 1}&1
\end{matrix}} \right| = \overrightarrow i \left( {3 + 4} \right) + \overrightarrow j \left( {0 + 1} \right) + \overrightarrow k \left( {1 - 0} \right) = \left( {7;1;1} \right) n = ∣ ∣ i − 1 0 j 3 − 1 k 4 1 ∣ ∣ = i ( 3 + 4 ) + j ( 0 + 1 ) + k ( 1 − 0 ) = ( 7 ; 1 ; 1 )
Answer: n → = ( 7 ; 1 ; 1 ) \overrightarrow n = \left( {7;1;1} \right) n = ( 7 ; 1 ; 1 )
(с) Since V contains L2 , M 2 ( 1 ; − 1 ; 3 ) ∈ V {M_2}\left( {1; - 1;3} \right) \in V M 2 ( 1 ; − 1 ; 3 ) ∈ V
Let us make an equation of V for a point M 2 ( 1 ; − 1 ; 3 ) {M_2}\left( {1; - 1;3} \right) M 2 ( 1 ; − 1 ; 3 ) and a normal vector n → = ( 7 ; 1 ; 1 ) \overrightarrow n = \left( {7;1;1} \right) n = ( 7 ; 1 ; 1 ) :
7 ( x − 1 ) + 1 ( y + 1 ) + 1 ( z − 3 ) = 0 ⇒ 7 x + y + z − 9 = 0 7(x - 1) + 1(y + 1) + 1(z - 3) = 0 \Rightarrow 7x + y + z - 9 = 0 7 ( x − 1 ) + 1 ( y + 1 ) + 1 ( z − 3 ) = 0 ⇒ 7 x + y + z − 9 = 0
Answer: 7 x + y + z − 9 = 0 7x + y + z - 9 = 0 7 x + y + z − 9 = 0
(d) If L3 is perpendicular to the plane V then L3 is parallel to n = ( 7 ; 1 ; 1 ) n = \left( {7;1;1} \right) n = ( 7 ; 1 ; 1 ) .
Then
L 3 : x − 1 7 = y + 1 1 = z − 4 1 {L_3}:\frac{{x - 1}}{7} = \frac{{y + 1}}{1} = \frac{{z - 4}}{1} L 3 : 7 x − 1 = 1 y + 1 = 1 z − 4
Answer: L 3 : x − 1 7 = y + 1 1 = z − 4 1 {L_3}:\frac{{x - 1}}{7} = \frac{{y + 1}}{1} = \frac{{z - 4}}{1} L 3 : 7 x − 1 = 1 y + 1 = 1 z − 4
Comments