Answer to Question #197943 in Analytic Geometry for Dhruv rawat

Question #197943

Find the vector equation of the plane determined by the points (0,2,1),(2,1,0),(1,-1,0). Further, check whether the line r=(1+2α)I + (2-3α)j - (1+5α)k intersects this plane. If it intersects, find the point of intersection. If the line and plane do not intersects,find the equation of another line that intersects this plane.


1
Expert's answer
2021-05-25T08:59:28-0400

A(0,2,1),B(2,1,0),C(1,1,0)x0y2z1201201101201=0A(0,2,1), B(2,1,0),C(1,-1,0)\\ \begin{vmatrix} x-0 & y-2&z-1 \\ 2-0 & 1-2&0-1\\ 1-0&-1-2&0-1 \end{vmatrix}=0\\

xy2z1211131=0\begin{vmatrix} x & y-2&z-1 \\ 2 & -1&-1\\ 1&-3&-1 \end{vmatrix}=0\\

2x+y5z+3=0-2x+y-5z+3=0

The vector equation of the plane:

(0,2,1)+v(20,12,01)++u(10,12,01)==(2v+u,2v3u,1vu)(0,2,1)+v(2-0,1-2,0-1)+\\ +u(1-0,-1-2,0-1)=\\ =(2v+u,2-v-3u,1-v-u)

r=(1+2a)i+(23a)j(1+5a)k==(1+2a,23a,(1+5a))2(1+2a)+(23a)5(15a)+3=018a+8=0a=49x=1+249=19y=2349=103z=(1+549)=119(19,103,119)r=(1+2a)i+(2-3a)j-(1+5a)k=\\ =(1+2a,2-3a,-(1+5a))\\ -2(1+2a)+(2-3a)-5(-1-5a)+3=0\\ 18a+8=0\\ a=-\frac{4}{9}\\ x=1+2\cdot\frac{-4}{9}=\frac{1}{9}\\ y=2-3\cdot \frac{-4}{9}=\frac{10}{3}\\ z=-(1+5\cdot \frac{-4}{9})=\frac{11}{9}\\ (\frac{1}{9}, \frac{10}{3},\frac{11}{9})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment