(3.1)
A B → = ⟨ − 3 − 1 , 5 − 3 ⟩ = ⟨ − 4 , 2 ⟩ \overrightarrow{AB}=\langle-3-1, 5-3\rangle=\langle-4, 2\rangle A B = ⟨ − 3 − 1 , 5 − 3 ⟩ = ⟨ − 4 , 2 ⟩
C = ( 2 ( 1 ) , 2 ( 3 ) ) C=(2(1), 2(3)) C = ( 2 ( 1 ) , 2 ( 3 ))
A C → = ⟨ 2 ( 1 ) − 1 , 2 ( 3 ) − 3 ⟩ = ⟨ 1 , 3 ⟩ \overrightarrow{AC}=\langle2(1)-1, 2(3)-3\rangle=\langle1, 3\rangle A C = ⟨ 2 ( 1 ) − 1 , 2 ( 3 ) − 3 ⟩ = ⟨ 1 , 3 ⟩
A B → × A C → = ∣ i ⃗ j ⃗ k ⃗ − 4 2 0 1 3 0 ∣ = ( − 4 ( 3 ) − 2 ( 1 ) ) k ⃗ = − 14 k ⃗ \overrightarrow{AB}\times \overrightarrow{AC}=\begin{vmatrix}
\vec i & \vec j & \vec k \\
-4 & 2 & 0 \\
1 & 3 & 0
\end{vmatrix}=(-4(3)-2(1))\vec k=-14\vec k A B × A C = ∣ ∣ i − 4 1 j 2 3 k 0 0 ∣ ∣ = ( − 4 ( 3 ) − 2 ( 1 )) k = − 14 k
= ( − 4 ( 3 ) − 2 ( 1 ) ) k ⃗ = − 14 k ⃗ =(-4(3)-2(1))\vec k=-14\vec k = ( − 4 ( 3 ) − 2 ( 1 )) k = − 14 k
A r e a A B C = 1 2 ∣ A B → × A C → ∣ = 7 ( u n i t s 2 ) Area_{ABC}=\dfrac{1}{2}|\overrightarrow{AB}\times \overrightarrow{AC}|=7(units^2) A re a A BC = 2 1 ∣ A B × A C ∣ = 7 ( u ni t s 2 ) Area of the triangle ABC is 7 square units.
(3.2)
Assume that the fourth vertex of parallelogram is D ( x , y ) D(x, y) D ( x , y )
A B → = D C → = ⟨ − 4 , 2 ⟩ \overrightarrow{AB}=\overrightarrow{DC}=\langle-4, 2\rangle A B = D C = ⟨ − 4 , 2 ⟩
⟨ 2 − x , 6 − y ⟩ = ⟨ − 4 , 2 ⟩ \langle 2-x, 6-y\rangle=\langle-4, 2\rangle ⟨ 2 − x , 6 − y ⟩ = ⟨ − 4 , 2 ⟩ x = 6 , y = 4 x=6, y=4 x = 6 , y = 4
D ( 6 , 4 ) D(6, 4) D ( 6 , 4 )
Comments