(3.1) Find the area of the triangle with the given vertices A(1, 3), B(−3, 5), and C with C = 2A.
(3.2) Use (3.1) to find the coordinates of the point D such that the quadrilateral ABCD is a parallelogram.
(3.1)
"C=(2(1), 2(3))"
"\\overrightarrow{AB}\\times \\overrightarrow{AC}=\\begin{vmatrix}\n \\vec i & \\vec j & \\vec k \\\\\n -4 & 2 & 0 \\\\\n 1 & 3 & 0\n\\end{vmatrix}=(-4(3)-2(1))\\vec k=-14\\vec k"
"=(-4(3)-2(1))\\vec k=-14\\vec k"
"Area_{ABC}=\\dfrac{1}{2}|\\overrightarrow{AB}\\times \\overrightarrow{AC}|=7(units^2)"
Area of the triangle ABC is 7 square units.
(3.2)
Assume that the fourth vertex of parallelogram is "D(x, y)"
"\\langle 2-x, 6-y\\rangle=\\langle-4, 2\\rangle"
"x=6, y=4"
"D(6, 4)"
Comments
Leave a comment