(3.1)
AB=â¨â3â1,5â3âŠ=â¨â4,2âŠ
C=(2(1),2(3))
AC=â¨2(1)â1,2(3)â3âŠ=â¨1,3âŠ
ABÃAC=âŖâŖâiâ41âjâ23âk00ââŖâŖâ=(â4(3)â2(1))k=â14k
=(â4(3)â2(1))k=â14k
AreaABCâ=21ââŖABÃACâŖ=7(units2) Area of the triangle ABC is 7 square units.
(3.2)
Assume that the fourth vertex of parallelogram is D(x,y)
AB=DC=â¨â4,2âŠ
â¨2âx,6âyâŠ=â¨â4,2⊠x=6,y=4
D(6,4)
Comments