Question #200598

Use the fact that :

0= x y 1

a1 b1 1

a2 b2 1

to determine the equation of the line passing through the distinct points (a1, b1) and (a2, b2), where |·| stands for det(·), the determinant. 


1
Expert's answer
2021-05-31T15:47:50-0400
xy1a1b11a2b21=0\begin{vmatrix} x & y & 1 \\ a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \end{vmatrix}=0

xb11b21ya11a21+1a1b1a2b2=0x\begin{vmatrix} b_1& 1 \\ b_2 & 1 \end{vmatrix}-y\begin{vmatrix} a_1 & 1 \\ a_2 & 1 \end{vmatrix}+1\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}=0

x(b1b2)y(a1a2)+a1b2a2b1=0x(b_1-b_2)-y(a_1-a_2)+a_1b_2-a_2b_1=0

The equation of the line passing through the distinct points (a1,b1)(a_1, b_1) and (a2,b2)(a_2, b_2) in slope-intercept form


y=b1b2a1a2x+a1b2a2b1a1a2,a1a2y=\dfrac{b_1-b_2}{a_1-a_2}x+\dfrac{a_1b_2-a_2b_1}{a_1-a_2}, a_1\not=a_2




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS