The sphere S intersects with the plane П → \to → x = a gives the circle
C → y 2 + z 2 = b 2 C \to y^2+z^2=b^2 C → y 2 + z 2 = b 2
S → ∣ ∣ p − p 0 ∣ ∣ = r S \to ||p-p_0||=r S → ∣∣ p − p 0 ∣∣ = r
with
r = b a b 2 + a 2 r = \frac{b}{a}\sqrt{b^2+a^2} r = a b b 2 + a 2
p = ( x , y , z ) , p 0 = ( x 0 , y 0 , z 0 ) p = (x,y,z), p_0 = (x_0,y_0,z_0) p = ( x , y , z ) , p 0 = ( x 0 , y 0 , z 0 )
x 0 = a + r 2 − b 2 , y 0 = z 0 = 0 x_0 = a+\sqrt{r^2-b^2}, y_0=z_0=0 x 0 = a + r 2 − b 2 , y 0 = z 0 = 0
Consider the line L → p = λ v ⃗ L\to p=\lambda \vec{v} L → p = λ v which passes by (0,0,0)
intersections S and L:
∣ ∣ λ v ⃗ − p 0 ∣ ∣ = r ||\lambda\vec{v} - p_0||=r ∣∣ λ v − p 0 ∣∣ = r
λ 2 ∣ ∣ v ⃗ ∣ ∣ 2 − 2 λ ⟨ v ⃗ , p 0 ⟩ + ∣ ∣ p 0 ∣ ∣ 2 = r 2 \lambda^2||\vec{v}||^2-2\lambda\langle\vec{v}, p_0\rangle+||p_0||^2=r^2 λ 2 ∣∣ v ∣ ∣ 2 − 2 λ ⟨ v , p 0 ⟩ + ∣∣ p 0 ∣ ∣ 2 = r 2
λ = ⟨ v ⃗ , p 0 ⟩ ± ⟨ v ⃗ , p 0 ⟩ 2 − ∣ ∣ v ⃗ ∣ ∣ 2 ( ∣ ∣ p 0 ∣ ∣ 2 − r 2 ) \lambda=\langle\vec{v}, p_0\rangle \pm \sqrt{\langle\vec{v}, p_0\rangle^2-||\vec{v}||^2(||p_0||^2-r^2)} λ = ⟨ v , p 0 ⟩ ± ⟨ v , p 0 ⟩ 2 − ∣∣ v ∣ ∣ 2 ( ∣∣ p 0 ∣ ∣ 2 − r 2 )
the line L must be tangent to S hence
⟨ v ⃗ , p 0 ⟩ 2 − ∣ ∣ v ⃗ ∣ ∣ 2 ( ∣ ∣ p 0 ∣ ∣ 2 − r 2 ) = 0 \langle\vec{v}, p_0\rangle^2-||\vec{v}||^2(||p_0||^2-r^2)=0 ⟨ v , p 0 ⟩ 2 − ∣∣ v ∣ ∣ 2 ( ∣∣ p 0 ∣ ∣ 2 − r 2 ) = 0
This is the locus defining the cone surface.
Putting v ⃗ = ( x , y , z ) \vec{v}=(x,y,z) v = ( x , y , z ) and applying the values for p 0 , r p_0,r p 0 , r we get
b 4 x 2 − a 4 ( y 2 + z 2 ) − 2 a 2 b 2 ( y 2 + z 2 ) + a 2 b 2 ( x 2 + y 2 + z 2 ) = 0 b^4x^2-a^4(y^2+z^2)-2a^2b^2(y^2+z^2)+a^2b^2(x^2+y^2+z^2)=0 b 4 x 2 − a 4 ( y 2 + z 2 ) − 2 a 2 b 2 ( y 2 + z 2 ) + a 2 b 2 ( x 2 + y 2 + z 2 ) = 0
Comments