The sphere S intersects with the plane П "\\to" x = a gives the circle
"C \\to y^2+z^2=b^2"
"S \\to ||p-p_0||=r"
with
"r = \\frac{b}{a}\\sqrt{b^2+a^2}"
"p = (x,y,z), p_0 = (x_0,y_0,z_0)"
"x_0 = a+\\sqrt{r^2-b^2}, y_0=z_0=0"
Consider the line "L\\to p=\\lambda \\vec{v}" which passes by (0,0,0)
intersections S and L:
"||\\lambda\\vec{v} - p_0||=r"
"\\lambda^2||\\vec{v}||^2-2\\lambda\\langle\\vec{v}, p_0\\rangle+||p_0||^2=r^2"
"\\lambda=\\langle\\vec{v}, p_0\\rangle \\pm \\sqrt{\\langle\\vec{v}, p_0\\rangle^2-||\\vec{v}||^2(||p_0||^2-r^2)}"
the line L must be tangent to S hence
"\\langle\\vec{v}, p_0\\rangle^2-||\\vec{v}||^2(||p_0||^2-r^2)=0"
This is the locus defining the cone surface.
Putting "\\vec{v}=(x,y,z)" and applying the values for "p_0,r" we get
"b^4x^2-a^4(y^2+z^2)-2a^2b^2(y^2+z^2)+a^2b^2(x^2+y^2+z^2)=0"
Comments
Leave a comment