Firstly we should prove, that plane 2x-4y-z+9=0 touches the sphere.
If distance between plane and centre of sphere equals radius of sphere, plane 2x-4y-z+9=0 touches the sphere. So:
d = ∣ A ⋅ x + B ⋅ y + C ⋅ z + D ∣ A 2 + B 2 + C 2 d =\frac{|A·x + B·y + C·z + D|}{\sqrt{A2 + B2 + C2}} d = A 2 + B 2 + C 2 ∣ A ⋅ x + B ⋅ y + C ⋅ z + D ∣ - formula of distance between plane and point.
d = ∣ 4 + 12 − 4 + 9 ∣ 21 = 21 d=\frac{|4+12-4+9|}{\sqrt{21}}=\sqrt{21} d = 21 ∣4 + 12 − 4 + 9∣ = 21
The radius equals: ( 2 − 1 ) 2 + ( − 3 − 1 ) 2 + ( 4 − 6 ) 2 = 21 \sqrt{(2-1)^2+(-3-1)^2+(4-6)^2}=\sqrt{21} ( 2 − 1 ) 2 + ( − 3 − 1 ) 2 + ( 4 − 6 ) 2 = 21
It means, that plane touches the sphere.
The equation of sphere: ( x − 2 ) 2 + ( y + 3 ) 2 + ( z − 4 ) 2 = 21 (x-2)^2+(y+3)^2+(z-4)^2=21 ( x − 2 ) 2 + ( y + 3 ) 2 + ( z − 4 ) 2 = 21
The equation of tangent plane at the point (x 0 , y 0 , z 0 x_0,y_0,z_0 x 0 , y 0 , z 0 ) is:
F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0 F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0
The equation of tangent plane of this sphere at the point (x 0 , y 0 , z 0 x_0,y_0,z_0 x 0 , y 0 , z 0 ) is:
2 ( x 0 − 2 ) ( x − x 0 ) + 2 ( y 0 + 3 ) ( y − y 0 ) + 2 ( z 0 − 4 ) ( z − z 0 ) = 0 2(x_0-2)(x-x_0)+2(y_0+3)(y-y_0)+2(z_0-4)(z-z_0)=0 2 ( x 0 − 2 ) ( x − x 0 ) + 2 ( y 0 + 3 ) ( y − y 0 ) + 2 ( z 0 − 4 ) ( z − z 0 ) = 0
2 ( x 0 − 2 ) x + 2 ( y 0 + 3 ) y + 2 ( z 0 − 4 ) z − 2 ( x 0 − 2 ) x 0 − 2 ( y 0 + 3 ) y 0 − 2 ( z 0 − 4 ) z 0 = 0 2(x_0-2)x+2(y_0+3)y+2(z_0-4)z-2(x_0-2)x_0-2(y_0+3)y_0-2(z_0-4)z_0=0 2 ( x 0 − 2 ) x + 2 ( y 0 + 3 ) y + 2 ( z 0 − 4 ) z − 2 ( x 0 − 2 ) x 0 − 2 ( y 0 + 3 ) y 0 − 2 ( z 0 − 4 ) z 0 = 0
To find this tangent point, we should equate the coefficients of the tangent plane equation to coefficients of given plane.
2 ( x 0 − 2 ) = 2 ; x 0 = 3 2(x_0-2)=2 ; \quad x_0=3 2 ( x 0 − 2 ) = 2 ; x 0 = 3
2 ( y 0 + 3 ) = − 4 ; y 0 = − 5 2(y_0+3)=-4 ; \quad y_0=-5 2 ( y 0 + 3 ) = − 4 ; y 0 = − 5
2 ( z 0 − 4 ) = − 1 ; z 0 = 3.5 2(z_0-4)=-1;\quad z_0=3.5 2 ( z 0 − 4 ) = − 1 ; z 0 = 3.5
So our point is (3, -5, 3.5)
Comments