Firstly we should find vectors "\\overline{PQ}" and "\\overline{QR}" :
"\\overline{PQ}=(1,-1,6)"
"\\overline{QR}" "=(-2,-1,-3)"
The area of a triangle PQR is half the area of a parallelogram built on vectors "\\overline{PQ}" and "\\overline{QR}". The area of a parallelogram built on vectors "\\overline{PQ}" and "\\overline{QR}" is the modulus of the vector product "\\overline{PQ}" and "\\overline{QR}", and therefore the area of triangle PQR is:
"S_{PQR}=\\frac{1}{2}|\\overline{PQ}\\times\\overline{QR}|"
"\\overline{PQ}\\times\\overline{QR}=" 9*"\\overline{i}" -9*"\\overline{j}" -3*"\\overline{k}"
"S_{PQR}=\\frac{1}{2}\\sqrt{81+81+9}=\\frac{3\\sqrt{19}}{2}"
Comments
Leave a comment