Question #140099
Find the area of triangle determinied by the point P(-3,1-1) Q(-2,0,5) and R(-4,-1,2).
1
Expert's answer
2020-10-26T19:00:00-0400

Firstly we should find vectors PQ\overline{PQ} and QR\overline{QR} :

PQ=(1,1,6)\overline{PQ}=(1,-1,6)

QR\overline{QR} =(2,1,3)=(-2,-1,-3)

The area of ​​a triangle PQR is half the area of ​​a parallelogram built on vectors PQ\overline{PQ} and QR\overline{QR}. The area of ​​a parallelogram built on vectors PQ\overline{PQ} and QR\overline{QR} is the modulus of the vector product PQ\overline{PQ} and QR\overline{QR}, and therefore the area of ​​triangle PQR is:

SPQR=12PQ×QRS_{PQR}=\frac{1}{2}|\overline{PQ}\times\overline{QR}|

PQ×QR=\overline{PQ}\times\overline{QR}= 9*i\overline{i} -9*j\overline{j} -3*k\overline{k}

SPQR=1281+81+9=3192S_{PQR}=\frac{1}{2}\sqrt{81+81+9}=\frac{3\sqrt{19}}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS