Given equation of base is
x 2 + y 2 = 4 x^2+y^2=4 x 2 + y 2 = 4
so the center of the cylinder lies at (0,0,0) and radius=2
Since Its equation of axis is fiven by
x + y + 2 z = 3 → x 3 + y 3 + 2 z 3 = 1 x+y+2z=3\\\to\dfrac{x}{3}+\dfrac{y}{3}+\dfrac{2z}{3}=1 x + y + 2 z = 3 → 3 x + 3 y + 3 2 z = 1
therefore Dr's of the above line are (3,3,3 2 ) \dfrac{3}{2}) 2 3 )
Let P(a,b,c) be the any point on the cylinder
Draw PM perpendicular to the axis of cylinder
Therefore PM=2
By distance formula,
A P 2 = ( a − 0 ) 2 + ( b − 0 ) 2 + ( c − 0 ) 2 ‘ − ( 1 ) AP^2=(a-0)^2+(b-0)^2+(c-0)^2~~~~~~~~~~~`-(1) A P 2 = ( a − 0 ) 2 + ( b − 0 ) 2 + ( c − 0 ) 2 ‘ − ( 1 )
Let MA be the projection of AP on the axis
MA=3 ( a − 0 ) + 3 ( b − 0 ) + 3 2 ( c − 0 ) 3 2 + 3 2 + ( 3 2 ) 2 \dfrac{3(a-0)+3(b-0)+\dfrac{3}{2}(c-0)}{\sqrt{3^2+3^2+(\frac{3}{2})^2}} 3 2 + 3 2 + ( 2 3 ) 2 3 ( a − 0 ) + 3 ( b − 0 ) + 2 3 ( c − 0 )
→ M A = 3 a + 3 b + 3 2 c 9 + 9 + 9 4 \to MA=\dfrac{3a+3b+\dfrac{3}{2}c}{\sqrt{9+9+\frac{9}{4}}} → M A = 9 + 9 + 4 9 3 a + 3 b + 2 3 c
→ M A = 3 2 ( 2 a + 2 b + c ) 9 2 \to MA=\dfrac{\frac{3}{2}(2a+2b+c)}{\dfrac{9}{2}} → M A = 2 9 2 3 ( 2 a + 2 b + c )
→ M A = 1 3 ( 2 a + 2 b + c ) \to MA=\dfrac{1}{3}(2a+2b+c) → M A = 3 1 ( 2 a + 2 b + c )
As AP2 − M A 2 = ( r a d i u s ) 2 ^2-MA^2=(radius)^2 2 − M A 2 = ( r a d i u s ) 2 ,
a 2 + b 2 + c 2 ) − 1 9 ( 2 a + 2 b + c ) 2 = 2 2 a^2+b^2+c^2)-\dfrac{1}{9}(2a+2b+c)^2=2^2 a 2 + b 2 + c 2 ) − 9 1 ( 2 a + 2 b + c ) 2 = 2 2
→ 9 a 2 + 9 b 2 + 9 c 2 − 4 a 2 − 4 b 2 − c 2 − 8 a b − 4 b c − 4 a c = 36 → 5 a 2 + 5 b 2 + 8 c 2 − 8 a b − 4 b c − 4 a c = 36 \to 9a^2+9b^2+9c^2-4a^2-4b^2-c^2-8ab-4bc-4ac=36\\\to 5a^2+5b^2+8c^2-8ab-4bc-4ac=36 → 9 a 2 + 9 b 2 + 9 c 2 − 4 a 2 − 4 b 2 − c 2 − 8 ab − 4 b c − 4 a c = 36 → 5 a 2 + 5 b 2 + 8 c 2 − 8 ab − 4 b c − 4 a c = 36
Replacing a,b,c by x,y,z
Therefore the equation of the cylinder is
5 x 2 + 5 y 2 + 8 z 2 − 8 x y − 4 y z − 4 x z = 36. 5x^2+5y^2+8z^2-8xy-4yz-4xz=36. 5 x 2 + 5 y 2 + 8 z 2 − 8 x y − 4 yz − 4 x z = 36.
Comments