Let x=y=z−1=tx=y=z-1=tx=y=z−1=t hence
x2+y2+z2+2yz+2zx+2xy=0⇔t2+t2+(t+1)2+2t(t+1)+2(t+1)t+2t2=0⇔4t2+(t2+2t+1)+4(t2+t)=0⇔9t2+6t+1=0⇔(3t+1)2=0⇔3t+1=0⇔t=−13x^2+y^2+z^2+2yz+2zx+2xy=0\Leftrightarrow\\ t^2+t^2+(t+1)^2+2t(t+1)+2(t+1)t+2t^2=0\Leftrightarrow\\ 4t^2+(t^2+2t+1)+4(t^2+t)=0\Leftrightarrow\\ 9t^2+6t+1=0\Leftrightarrow\\ (3t+1)^2=0\Leftrightarrow\\ 3t+1=0\Leftrightarrow\\ t=-\frac13x2+y2+z2+2yz+2zx+2xy=0⇔t2+t2+(t+1)2+2t(t+1)+2(t+1)t+2t2=0⇔4t2+(t2+2t+1)+4(t2+t)=0⇔9t2+6t+1=0⇔(3t+1)2=0⇔3t+1=0⇔t=−31
hence x=t=−13, y=t=−13, z=t+1=23x=t=-\frac13,\,y=t=-\frac13,\,z=t+1=\frac23x=t=−31,y=t=−31,z=t+1=32 therefore (−13,−13,23)\left(-\frac13,-\frac13,\frac23\right)(−31,−31,32) is the only intersection point, QED.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments