Question #124973
The line x=y=z-1 intersects the cone x^2+y^2+z^2+2yz+2zx+2xy=0 at exactly one point
1
Expert's answer
2020-07-05T16:35:46-0400

Let x=y=z1=tx=y=z-1=t hence

x2+y2+z2+2yz+2zx+2xy=0t2+t2+(t+1)2+2t(t+1)+2(t+1)t+2t2=04t2+(t2+2t+1)+4(t2+t)=09t2+6t+1=0(3t+1)2=03t+1=0t=13x^2+y^2+z^2+2yz+2zx+2xy=0\Leftrightarrow\\ t^2+t^2+(t+1)^2+2t(t+1)+2(t+1)t+2t^2=0\Leftrightarrow\\ 4t^2+(t^2+2t+1)+4(t^2+t)=0\Leftrightarrow\\ 9t^2+6t+1=0\Leftrightarrow\\ (3t+1)^2=0\Leftrightarrow\\ 3t+1=0\Leftrightarrow\\ t=-\frac13

hence x=t=13,y=t=13,z=t+1=23x=t=-\frac13,\,y=t=-\frac13,\,z=t+1=\frac23 therefore (13,13,23)\left(-\frac13,-\frac13,\frac23\right) is the only intersection point, QED.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS