Answer to Question #123754 in Analytic Geometry for Emmanuel Kojo Mensa Kent

Question #123754
Two equal concurrent forces, each of F N have a resultant of 6 N. When the magnitude of one of the forces is doubled, the resultant becomes 11 N. Calculate the value of F and the angle between the forces.
1
Expert's answer
2020-06-25T18:33:47-0400

Let F1=F2=x,F_1=F_2=x,   α\ \ \alpha - angle between these forces.

F3=F1+F2,  F3=6;\vec{F_3}=\vec{F_1}+\vec{F_2},\ \ F_3=6;

F4=2F1+F2=F3+F1,  F4=11;\vec{F_4}=2\vec{F_1}+\vec{F_2}=\vec{F_3}+\vec{F_1},\ \ F_4=11;


We can find F3F_3 using formula: F3=2F2cos(α/2),  3=xcos(α/2)F_3=2F_2\cos(\alpha /2), \ \ 3=x\cos(\alpha /2) .

(AB=BC, BDAC AC=AD=ABcos(α/2))AB=BC, \ BD\perp AC\ \Rightarrow AC=AD= AB\cos(\alpha/2))


And we can find F4F_4 using law of cosines for ΔECA:\Delta ECA: 112=x2+622×x×6×cos(πα/2)=x2+36+12xcos(α/2)=x2+36+12×3,11^2=x^2+6^2-2\times x\times 6\times \cos (\pi-\alpha/2)=x^2+36+12x\cos(\alpha/2)=x^2+36+12\times 3,

121=72+x2,  x2=49,  x=7.121=72+x^2, \ \ x^2=49, \ \ x=7.

3=xcos(α/2)=7cos(α/2),  cos(α/2)=3/7,  α/2=arccos3/7,  α=2arccos3/7.3=x\cos(\alpha/2)=7\cos (\alpha/2), \ \ \cos(\alpha/2)=3/7, \ \ \alpha/2=\arccos 3/7, \ \ \alpha=2\arccos 3/7.


Answer: F=7,  α=2arccos3/7.F=7, \ \ \alpha =2\arccos 3/7.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Emmanuel Kojo Mensah Kent
26.06.20, 09:53

Thanks very much It was really a great help

Leave a comment