Let "F_1=F_2=x," "\\ \\ \\alpha" - angle between these forces.
"\\vec{F_3}=\\vec{F_1}+\\vec{F_2},\\ \\ F_3=6;"
"\\vec{F_4}=2\\vec{F_1}+\\vec{F_2}=\\vec{F_3}+\\vec{F_1},\\ \\ F_4=11;"
We can find "F_3" using formula: "F_3=2F_2\\cos(\\alpha \/2), \\ \\ 3=x\\cos(\\alpha \/2)" .
("AB=BC, \\ BD\\perp AC\\ \\Rightarrow AC=AD= AB\\cos(\\alpha\/2))"
And we can find "F_4" using law of cosines for "\\Delta ECA:" "11^2=x^2+6^2-2\\times x\\times 6\\times \\cos (\\pi-\\alpha\/2)=x^2+36+12x\\cos(\\alpha\/2)=x^2+36+12\\times 3,"
"121=72+x^2, \\ \\ x^2=49, \\ \\ x=7."
"3=x\\cos(\\alpha\/2)=7\\cos (\\alpha\/2), \\ \\ \\cos(\\alpha\/2)=3\/7, \\ \\ \\alpha\/2=\\arccos 3\/7, \\ \\ \\alpha=2\\arccos 3\/7."
Answer: "F=7, \\ \\ \\alpha =2\\arccos 3\/7."
Comments
Thanks very much It was really a great help
Leave a comment