If
α=3i−j+2k,
β=2i+j−k and
γ=i−2j+2k, find
α×β×γ.
Given α=3i-j+2k, β=2i+j−k, y=i-2j+2k.
1) First, find the vector product of two vectors using the formula
α х β =i(y1z2- y2 z1)- j(x1z2- x2 z1)+k(x1y2- x2 y1)
Then we get:
α х β =i((-1)(-1)- (1) (2))- j((3)(-1)- (2) (2))+k((3)(1)-( -1)( 2));
α х β =i(1- 2)- j(-3- 4)+k(3+ 2);
α х β =-i+7j+5k;
2) Using the result, we find α х β х y
(α х β )х y= i(y1z2- y2 z1)- j(x1z2- x2 z1)+k(x1y2- x2 y1)
(α х β )х y =i((7)(2)- (5) (-2))- j((-1)(2)- (5) (1))+k((-1)(-2)-( 1)( 7));
(α х β )х y =i(14+10)- j(-2- 5)+k(2-7);
(α х β )х y =24i+7j-5k;
Comments
Leave a comment